Probability inequalities for the Galton–Watson critical process
Teoriâ veroâtnostej i ee primeneniâ, Tome 50 (2005) no. 2, pp. 266-291 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The upper bounds for the large deviation probabilities of a critical Galton–Watson process are derived under various conditions on the offspring distribution.
Keywords: Galton–Watson process, Doob inequality, Chebyshev inequality.
Mots-clés : martingale, Cramèr's condition
@article{TVP_2005_50_2_a3,
     author = {S. V. Nagaev and V. I. Vakhtel'},
     title = {Probability inequalities for the {Galton{\textendash}Watson} critical process},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {266--291},
     year = {2005},
     volume = {50},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2005_50_2_a3/}
}
TY  - JOUR
AU  - S. V. Nagaev
AU  - V. I. Vakhtel'
TI  - Probability inequalities for the Galton–Watson critical process
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2005
SP  - 266
EP  - 291
VL  - 50
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TVP_2005_50_2_a3/
LA  - ru
ID  - TVP_2005_50_2_a3
ER  - 
%0 Journal Article
%A S. V. Nagaev
%A V. I. Vakhtel'
%T Probability inequalities for the Galton–Watson critical process
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2005
%P 266-291
%V 50
%N 2
%U http://geodesic.mathdoc.fr/item/TVP_2005_50_2_a3/
%G ru
%F TVP_2005_50_2_a3
S. V. Nagaev; V. I. Vakhtel'. Probability inequalities for the Galton–Watson critical process. Teoriâ veroâtnostej i ee primeneniâ, Tome 50 (2005) no. 2, pp. 266-291. http://geodesic.mathdoc.fr/item/TVP_2005_50_2_a3/

[1] Nagaev S. V., Vakhrushev N. V., “Otsenka veroyatnostei bolshikh uklonenii dlya kriticheskogo protsessa Galtona–Vatsona”, Teoriya veroyatn. i ee primen., 20:1 (1975), 181–182 | Zbl

[2] Kharris T., Teoriya vetvyaschikhsya protsessov, Mir, M., 1966, 355 pp.

[3] Makarov G. D., “Bolshie ukloneniya dlya kriticheskogo protsessa Galtona–Vatsona”, Teoriya veroyatn. i ee primen., 25:3 (1980), 490–501 | MR | Zbl

[4] Lindvall T., “On the maximum of a branching process”, Scand. J. Statist., 3:4 (1976), 209–214 | MR | Zbl

[5] Borovkov K. A., Vatutin V. A., “On distribution tails and expectations of maxima in critical branching processes”, J. Appl. Probab., 33:3 (1996), 614–622 | DOI | MR | Zbl

[6] Vatutin V. A., Topchii V. A., “Maksimum kriticheskikh protsessov Galtona–Vatsona i nepreryvnye sleva sluchainye bluzhdaniya”, Teoriya veroyatn. i ee primen., 42:1 (1997), 21–34 | MR | Zbl

[7] Karpenko A. V., Predelnye teoremy i veroyatnostnye neravenstva dlya polnogo i maksimalnogo chisla potomkov vetvyaschegosya protsessa Galtona–Vatsona, Diss. $\dots$ kand. fiz.-matem. nauk, In-t matematiki im. S. L. Soboleva, Novosibirsk, 1990

[8] Dub Dzh. L., Veroyatnostnye protsessy, IL, M., 1956, 605 pp. | MR

[9] Petrov V. V., Summy nezavisimykh sluchainykh velichin, Nauka, M., 1972, 416 pp. | MR

[10] Nagaev S. V., Vakhtel V. I., “Predelnye teoremy dlya veroyatnostei bolshikh uklonenii protsessa Galtona–Vatsona”, Diskretn. matem., 15:1 (2003), 3–27 | Zbl

[11] Fuk D. Kh., Nagaev S. V., “Veroyatnostnye neravenstva dlya summ nezavisimykh sluchainykh velichin”, Teoriya veroyatn. i ee primen., 16:4 (1971), 660–675 | MR | Zbl

[12] Fuk D. Kh., “Nekotorye veroyatnostnye neravenstva dlya martingalov”, Sib. matem. zhurn., 14:1 (1973), 185–193 | MR | Zbl

[13] Meier P.-A., Veroyatnost i potentsialy, Mir, M., 1973, 324 pp.

[14] Gradshtein I. S., Ryzhik I. M., Tablitsy integralov, summ, ryadov i proizvedenii, Fizmatgiz, M., 1962

[15] Lamperti J., “Criteria for the reccurence or transience of stochastic processes. I”, J. Math. Anal. Appl., 1 (1960), 314–330 | DOI | MR | Zbl

[16] Borovkov A. A., Fayolle G., Korshunov D. A., “Transient phenomena for Markov chains and applications”, Adv. Appl. Probab., 24:2 (1992), 322–342 | DOI | MR | Zbl

[17] Fayolle G., Malyshev V. A., Men'shikov M. V., “Random walks in a quarter plane with zero drifts. I. Ergodicity and null recurrence”, Ann. Inst. H. Poincaré, Probab. Statist., 28:2 (1992), 179–194 | MR | Zbl