Energy and number of clusters in stochastic systems of sticky gravitating particles
Teoriâ veroâtnostej i ee primeneniâ, Tome 50 (2005) no. 2, pp. 241-265 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider a one-dimensional model of a gravitational gas. The gas consists of $n$ particles whose initial positions and speeds are random. At collisions particles stick together, forming “clusters.” Our main goal is to study the properties of the gas as $n\to\infty$. We separately consider “cold gas” (each particle has zero initial speed) and “warm gas” (each particle has nonzero initial speed). For the cold gas, the asymptotics of the number of clusters $K_n(t)$ is studied. We also explore the kinetic energy $E_n(t)$. It is proved that the warm gas instantly “cools,” i.e., $E_n(+0)\to 0$ as $n\to\infty$.
Mots-clés : gravitational gas
Keywords: sticky particles, nonelastic collisions, system of particles, number of clusters, energy.
@article{TVP_2005_50_2_a2,
     author = {V. V. Vysotsky},
     title = {Energy and number of clusters in stochastic systems of sticky gravitating particles},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {241--265},
     year = {2005},
     volume = {50},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2005_50_2_a2/}
}
TY  - JOUR
AU  - V. V. Vysotsky
TI  - Energy and number of clusters in stochastic systems of sticky gravitating particles
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2005
SP  - 241
EP  - 265
VL  - 50
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TVP_2005_50_2_a2/
LA  - ru
ID  - TVP_2005_50_2_a2
ER  - 
%0 Journal Article
%A V. V. Vysotsky
%T Energy and number of clusters in stochastic systems of sticky gravitating particles
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2005
%P 241-265
%V 50
%N 2
%U http://geodesic.mathdoc.fr/item/TVP_2005_50_2_a2/
%G ru
%F TVP_2005_50_2_a2
V. V. Vysotsky. Energy and number of clusters in stochastic systems of sticky gravitating particles. Teoriâ veroâtnostej i ee primeneniâ, Tome 50 (2005) no. 2, pp. 241-265. http://geodesic.mathdoc.fr/item/TVP_2005_50_2_a2/

[1] Shandarin S. F., Zel'dovich Ya. B., “The large-scale structure of the universe: turbulence, intermittency, structures in a self-gravitating medium”, Rev. Modern Phys., 61:2 (1989), 185–220 | DOI | MR

[2] Martin Ph. A., Piasecki J., “Aggregation dynamics in a self-gravitating one-dimensional gas”, J. Statist. Phys., 84:3–4 (1996), 837–857 | DOI | MR | Zbl

[3] Giraud C., “Clustering in a self-gravitating one-dimensional gas at zero temperature”, J. Statist. Phys., 105:3–4 (2001), 585–604 | DOI | MR | Zbl

[4] Lifshits M., Shi Z., “Aggregation rates in one-dimensional stochastic systems with adhesion and gravitation”, Ann. Probab., 33 (2005), 53–81 | DOI | MR | Zbl

[5] Bonvin J. C., Martin Ph. A., Piasecki J., Zotos X., “Statistics of mass aggregation in a self-gravitating one-dimensional gas”, J. Statist. Phys., 91:1–2 (1998), 177–197 | DOI | Zbl

[6] Suidan T. M., “Odnomernyi gravitatsionno vzaimodeistvuyuschii gaz i vypuklaya minoranta brounovskogo dvizheniya”, Uspekhi matem. nauk, 56:4 (2001), 73–96 | MR | Zbl

[7] E. Weinan, Rykov Yu. G., Sinai Ya. G., “Generalized variational principles, global weak solutions and behavior with random initial data for systems of conservation laws arising in adhesion particle dynamics”, Comm. Math. Phys., 177:2 (1996), 349–380 | DOI | MR | Zbl

[8] Billingsli P., Skhodimost veroyatnostnykh mer, Nauka, M., 1977, 352 pp. | MR