Keywords: sticky particles, nonelastic collisions, system of particles, number of clusters, energy.
@article{TVP_2005_50_2_a2,
author = {V. V. Vysotsky},
title = {Energy and number of clusters in stochastic systems of sticky gravitating particles},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {241--265},
year = {2005},
volume = {50},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2005_50_2_a2/}
}
V. V. Vysotsky. Energy and number of clusters in stochastic systems of sticky gravitating particles. Teoriâ veroâtnostej i ee primeneniâ, Tome 50 (2005) no. 2, pp. 241-265. http://geodesic.mathdoc.fr/item/TVP_2005_50_2_a2/
[1] Shandarin S. F., Zel'dovich Ya. B., “The large-scale structure of the universe: turbulence, intermittency, structures in a self-gravitating medium”, Rev. Modern Phys., 61:2 (1989), 185–220 | DOI | MR
[2] Martin Ph. A., Piasecki J., “Aggregation dynamics in a self-gravitating one-dimensional gas”, J. Statist. Phys., 84:3–4 (1996), 837–857 | DOI | MR | Zbl
[3] Giraud C., “Clustering in a self-gravitating one-dimensional gas at zero temperature”, J. Statist. Phys., 105:3–4 (2001), 585–604 | DOI | MR | Zbl
[4] Lifshits M., Shi Z., “Aggregation rates in one-dimensional stochastic systems with adhesion and gravitation”, Ann. Probab., 33 (2005), 53–81 | DOI | MR | Zbl
[5] Bonvin J. C., Martin Ph. A., Piasecki J., Zotos X., “Statistics of mass aggregation in a self-gravitating one-dimensional gas”, J. Statist. Phys., 91:1–2 (1998), 177–197 | DOI | Zbl
[6] Suidan T. M., “Odnomernyi gravitatsionno vzaimodeistvuyuschii gaz i vypuklaya minoranta brounovskogo dvizheniya”, Uspekhi matem. nauk, 56:4 (2001), 73–96 | MR | Zbl
[7] E. Weinan, Rykov Yu. G., Sinai Ya. G., “Generalized variational principles, global weak solutions and behavior with random initial data for systems of conservation laws arising in adhesion particle dynamics”, Comm. Math. Phys., 177:2 (1996), 349–380 | DOI | MR | Zbl
[8] Billingsli P., Skhodimost veroyatnostnykh mer, Nauka, M., 1977, 352 pp. | MR