A limit property of the geometric distribution
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 50 (2005) no. 2, pp. 404-408
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Let random variables $X^{\ast}$, $X$ have discrete distributions on the nonnegative integers and let
$$
\mathbf{P}\{X=k\}=c\sum^{\infty}_{j=k}\mathbf{P}\{X^{\ast}=j\},\qquad k=0,1,2,\dots,
$$
with $c$ a proper constant. Repeated summations of this type are investigated. The limit distribution is geometric for a wide class of parent distributions.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
discrete distributions, partial-sums distributions, geometric distribution.
                    
                    
                    
                  
                
                
                @article{TVP_2005_50_2_a15,
     author = {J. Macutek},
     title = {A limit property of the geometric distribution},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {404--408},
     publisher = {mathdoc},
     volume = {50},
     number = {2},
     year = {2005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TVP_2005_50_2_a15/}
}
                      
                      
                    J. Macutek. A limit property of the geometric distribution. Teoriâ veroâtnostej i ee primeneniâ, Tome 50 (2005) no. 2, pp. 404-408. http://geodesic.mathdoc.fr/item/TVP_2005_50_2_a15/
