A limit property of the geometric distribution
Teoriâ veroâtnostej i ee primeneniâ, Tome 50 (2005) no. 2, pp. 404-408 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let random variables $X^{\ast}$, $X$ have discrete distributions on the nonnegative integers and let $$ \mathbf{P}\{X=k\}=c\sum^{\infty}_{j=k}\mathbf{P}\{X^{\ast}=j\},\qquad k=0,1,2,\dots, $$ with $c$ a proper constant. Repeated summations of this type are investigated. The limit distribution is geometric for a wide class of parent distributions.
Keywords: discrete distributions, partial-sums distributions, geometric distribution.
@article{TVP_2005_50_2_a15,
     author = {J. Macutek},
     title = {A limit property of the geometric distribution},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {404--408},
     year = {2005},
     volume = {50},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TVP_2005_50_2_a15/}
}
TY  - JOUR
AU  - J. Macutek
TI  - A limit property of the geometric distribution
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2005
SP  - 404
EP  - 408
VL  - 50
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TVP_2005_50_2_a15/
LA  - en
ID  - TVP_2005_50_2_a15
ER  - 
%0 Journal Article
%A J. Macutek
%T A limit property of the geometric distribution
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2005
%P 404-408
%V 50
%N 2
%U http://geodesic.mathdoc.fr/item/TVP_2005_50_2_a15/
%G en
%F TVP_2005_50_2_a15
J. Macutek. A limit property of the geometric distribution. Teoriâ veroâtnostej i ee primeneniâ, Tome 50 (2005) no. 2, pp. 404-408. http://geodesic.mathdoc.fr/item/TVP_2005_50_2_a15/

[1] Johnson N. L., Kotz S., Kemp A. W., Univariate Discrete Distributions, Wiley, New York, 1992, 565 pp. | MR

[2] Mačutek J., “A special class of partial-sums discrete probability distributions”, J. Electrical Engineering (Elektrotechnický časopis), 52, 10/s (special) (2001), 22–23, Bratislava: Slovak University of Technology, Slovak Academy of Sciences

[3] Mačutek J., “Katz partial summations family”, Tatra Mt. Math. Publ., 22 (2001), 143–148 | MR

[4] Wimmer G., Altmann G., Thesaurus of Univariate Discrete Probability Distributions, Stamm, Essen, 1999, 866 pp.

[5] Wimmer G., Altmann G., “On the generalization of the STER distribution applied to generalized hypergeometric parents”, Acta Univ. Palack. Olomuc. Fac. Rerum Natur. Math., 39 (2000), 215–247 | MR | Zbl

[6] Wimmer G., Kalas J., “A characterization of the geometric distribution”, Tatra Mt. Math. Publ., 17 (1999), 325–329 | MR | Zbl