Some properties of generalized Pickands constants
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 50 (2005) no. 2, pp. 396-404
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We study properties of generalized Pickands constants $\mathcal{H}_{\eta}$, which appear in the extreme value theory of Gaussian processes and are defined via the limit
$$
\mathcal{H}_{\eta}=\lim_{T\to\infty}\frac{\mathcal{H}_{\eta}(T)}{T},
$$
where $\mathcal{H}_{\eta}(T)=\mathbf{E}\exp(\max_{t \in[0,T]}(\sqrt{2}\,\eta(t)-\mathrm{Var}(\eta(t))))$ and $\eta(t)$ is a centered Gaussian process with stationary increments.
We give estimates of the rate of convergence of $\mathcal{H}_{\eta}(T)/T$ to $\mathcal{H}_{\eta}$ and prove that if $\eta_{(n)}(t)$ weakly converges in $C([0,\infty))$ to $\eta(t)$, then under some weak conditions, $\lim_{n\to\infty}\mathcal{H}_{\eta_{(n)}}=\mathcal{H}_{\eta}$.
As an application we prove that $\Upsilon(\alpha)=\mathcal{H}_{B_{\alpha/2}}$ is continuous on $(0,2]$, where $B_{\alpha/2}(t)$ is a fractional Brownian motion with Hurst parameter $\alpha/2$.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
exact asymptotics, extremes, fractional Brownian motion, Gaussian process, generalized Pickands constants.
                    
                    
                    
                  
                
                
                @article{TVP_2005_50_2_a14,
     author = {K. Debicki},
     title = {Some properties of generalized {Pickands} constants},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {396--404},
     publisher = {mathdoc},
     volume = {50},
     number = {2},
     year = {2005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TVP_2005_50_2_a14/}
}
                      
                      
                    K. Debicki. Some properties of generalized Pickands constants. Teoriâ veroâtnostej i ee primeneniâ, Tome 50 (2005) no. 2, pp. 396-404. http://geodesic.mathdoc.fr/item/TVP_2005_50_2_a14/
