Some properties of generalized Pickands constants
Teoriâ veroâtnostej i ee primeneniâ, Tome 50 (2005) no. 2, pp. 396-404 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study properties of generalized Pickands constants $\mathcal{H}_{\eta}$, which appear in the extreme value theory of Gaussian processes and are defined via the limit $$ \mathcal{H}_{\eta}=\lim_{T\to\infty}\frac{\mathcal{H}_{\eta}(T)}{T}, $$ where $\mathcal{H}_{\eta}(T)=\mathbf{E}\exp(\max_{t \in[0,T]}(\sqrt{2}\,\eta(t)-\mathrm{Var}(\eta(t))))$ and $\eta(t)$ is a centered Gaussian process with stationary increments. We give estimates of the rate of convergence of $\mathcal{H}_{\eta}(T)/T$ to $\mathcal{H}_{\eta}$ and prove that if $\eta_{(n)}(t)$ weakly converges in $C([0,\infty))$ to $\eta(t)$, then under some weak conditions, $\lim_{n\to\infty}\mathcal{H}_{\eta_{(n)}}=\mathcal{H}_{\eta}$. As an application we prove that $\Upsilon(\alpha)=\mathcal{H}_{B_{\alpha/2}}$ is continuous on $(0,2]$, where $B_{\alpha/2}(t)$ is a fractional Brownian motion with Hurst parameter $\alpha/2$.
Keywords: exact asymptotics, extremes, fractional Brownian motion, Gaussian process, generalized Pickands constants.
@article{TVP_2005_50_2_a14,
     author = {K. Debicki},
     title = {Some properties of generalized {Pickands} constants},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {396--404},
     year = {2005},
     volume = {50},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TVP_2005_50_2_a14/}
}
TY  - JOUR
AU  - K. Debicki
TI  - Some properties of generalized Pickands constants
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2005
SP  - 396
EP  - 404
VL  - 50
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TVP_2005_50_2_a14/
LA  - en
ID  - TVP_2005_50_2_a14
ER  - 
%0 Journal Article
%A K. Debicki
%T Some properties of generalized Pickands constants
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2005
%P 396-404
%V 50
%N 2
%U http://geodesic.mathdoc.fr/item/TVP_2005_50_2_a14/
%G en
%F TVP_2005_50_2_a14
K. Debicki. Some properties of generalized Pickands constants. Teoriâ veroâtnostej i ee primeneniâ, Tome 50 (2005) no. 2, pp. 396-404. http://geodesic.mathdoc.fr/item/TVP_2005_50_2_a14/

[1] Bräker H. U., High boundary excursions of locally stationary Gaussian processes, Ph. D. Thesis, University of Bern, Bern, 1993

[2] Dȩbicki K., “Ruin probabilities for Gaussian integrated processes”, Stochastic Process. Appl., 98 (2002), 151–174 | DOI | MR

[3] Dȩbicki K., Michna Z., Rolski T., “Simulation of the asymptotic constant in some fluid models”, Stoch. Models, 19:3 (2003), 407–423 | DOI | MR

[4] Michna Z., “On tail probabilities and first passage times for fractional Brownian motion”, Math. Methods Oper. Res., 49:2 (1999), 335–354 | MR | Zbl

[5] Pickands J. III, “Asymptotic properties of the maximum in a stationary Gaussian process”, Trans. Amer. Math. Soc., 145 (1969), 75–86 | DOI | MR | Zbl

[6] Piterbarg V. I., Asymptotic Methods in the Theory of Gaussian Processes and Fields, Amer. Math. Soc., Providence, R.I., 1996, 206 pp. | MR

[7] Shao Q., “Bounds and estimators of a basic constant in extreme value theory of Gaussian processes”, Statist. Sinica, 6 (1996), 245–257 | MR | Zbl