Analogues of the Chernoff inequality for negative binomial ditribution
Teoriâ veroâtnostej i ee primeneniâ, Tome 50 (2005) no. 2, pp. 379-382 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Analogues of the isoperimetric Chernoff inequality for a negative binomial distribution are obtained.
Mots-clés : negative binomial distribution, Pascal distribution
Keywords: moment inequalities, factorial-power binomials, polynomials orthogonal with respect to a negative binomial distribution (Pascal's).
@article{TVP_2005_50_2_a11,
     author = {Yu. V. Prokhorov and O. V. Viskov and V. I. Khokhlov},
     title = {Analogues of the {Chernoff} inequality for negative binomial ditribution},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {379--382},
     year = {2005},
     volume = {50},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2005_50_2_a11/}
}
TY  - JOUR
AU  - Yu. V. Prokhorov
AU  - O. V. Viskov
AU  - V. I. Khokhlov
TI  - Analogues of the Chernoff inequality for negative binomial ditribution
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2005
SP  - 379
EP  - 382
VL  - 50
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TVP_2005_50_2_a11/
LA  - ru
ID  - TVP_2005_50_2_a11
ER  - 
%0 Journal Article
%A Yu. V. Prokhorov
%A O. V. Viskov
%A V. I. Khokhlov
%T Analogues of the Chernoff inequality for negative binomial ditribution
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2005
%P 379-382
%V 50
%N 2
%U http://geodesic.mathdoc.fr/item/TVP_2005_50_2_a11/
%G ru
%F TVP_2005_50_2_a11
Yu. V. Prokhorov; O. V. Viskov; V. I. Khokhlov. Analogues of the Chernoff inequality for negative binomial ditribution. Teoriâ veroâtnostej i ee primeneniâ, Tome 50 (2005) no. 2, pp. 379-382. http://geodesic.mathdoc.fr/item/TVP_2005_50_2_a11/

[1] Viskov O. V., Prokhorov Yu. V., Khokhlov V. I., “Puassonovskii analog neravenstva Chernova”, Obozrenie prikl. i promyshl. matem., 8:1 (2001), 128–129 | MR

[2] Prokhorov Yu. V., Viskov O. V., Khokhlov V. I., “Binomialnye analogi neravenstva Chernova”, Teoriya veroyatn. i ee primen., 46:3 (2001), 592–594 | MR | Zbl

[3] Chernoff H., “A note on an inequality involving the normal distribution”, Ann. Probab., 9 (1981), 533–535 | DOI | MR | Zbl

[4] Sege G., Ortogonalnye mnogochleny, Fizmatgiz, M., 1962, 500 pp.

[5] Khokhlov V. I., “Mnogochleny, ortogonalnye otnositelno polinomialnogo raspredeleniya, i faktorialno-stepennoi formalizm”, Teoriya veroyatn. i ee primen., 46:3 (2001), 585–594 | MR

[6] Khokhlov V. I., “Mnogochleny, ortogonalnye otnositelno otritsatelnogo binomialnogo raspredeleniya”, Obozrenie prikl. i promyshl. matem., 11:3 (2004), 487–492 ; “Письмо в редакцию”, Обозрение прикл. и промышл. матем., 12:1 (2005), 207 | Zbl

[7] Prokhorov A. V., “Otritsatelnoe binomialnoe raspredelenie”, V entsiklopedii: Teoriya veroyatnostei i matematicheskaya statistika, eds. Yu. V. Prokhorov i dr., BRE, M., 1999, 436

[8] Asai N., Kubo I., Kuo H.-H., “Multiplicative renormalization and generating functions. II”, Taiwanese J. Math., 8:4 (2004), 593–628 | MR