Transient phenomena for random walks with nonidential jumps having nonidetically infinite variances
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 50 (2005) no. 2, pp. 224-240
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Let $\zeta_1,\zeta_2,\dots$ be independent random variables,
$$
Z_n=\sum_{i=1}^n\zeta_i,\qquad \overline{Z}_n=\max_{k\leq n}Z_k,\qquad Z=\overline{Z}_\infty.
$$
It is well known that if $\zeta_i$ are identically distributed, then $Z$ is a proper random variable when ${\mathbf{E}\zeta_i=-a0}$, and $Z=\infty$ a.s. when $a=0$. The limiting distribution for $\overline{Z}_n$ 
as $n\to\infty$, $a\to 0$ (in the triangular array scheme) when $\mathbf{E}\zeta_i^2\infty$ 
is well studied (see, e.g., [J. F. C. Kingman, J. Roy. Statist. Soc. Ser. B, 24 (1962), pp. 383–392], 
[Yu. V. Prokhorov, Litov. Math. Sb., 3 (1963), pp. 199–204 (in Russian)], and [A. A. Borovkov, Stochastic Process in Queueing Theory, Springer-Verlag, New York, 1976]).
In the present paper, we study the limiting distribution for $\overline{Z}_n$ as $\mathbf{E}\zeta_i\to 0$, $n\to\infty$, in the case when $\mathbf{E}\zeta_i^2=\infty$ and the summands $\zeta_i$ are nonidentically distributed.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
random walks, maxima of partial sums, transient phenomena, nonidentically distributed summands, infinite variance.
Mots-clés : convergence to stable processes
                    
                  
                
                
                Mots-clés : convergence to stable processes
@article{TVP_2005_50_2_a1,
     author = {A. A. Borovkov},
     title = {Transient phenomena for random walks with nonidential jumps having nonidetically infinite variances},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {224--240},
     publisher = {mathdoc},
     volume = {50},
     number = {2},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2005_50_2_a1/}
}
                      
                      
                    TY - JOUR AU - A. A. Borovkov TI - Transient phenomena for random walks with nonidential jumps having nonidetically infinite variances JO - Teoriâ veroâtnostej i ee primeneniâ PY - 2005 SP - 224 EP - 240 VL - 50 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_2005_50_2_a1/ LA - ru ID - TVP_2005_50_2_a1 ER -
A. A. Borovkov. Transient phenomena for random walks with nonidential jumps having nonidetically infinite variances. Teoriâ veroâtnostej i ee primeneniâ, Tome 50 (2005) no. 2, pp. 224-240. http://geodesic.mathdoc.fr/item/TVP_2005_50_2_a1/
