Transient phenomena for random walks with nonidential jumps having nonidetically infinite variances
Teoriâ veroâtnostej i ee primeneniâ, Tome 50 (2005) no. 2, pp. 224-240 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $\zeta_1,\zeta_2,\dots$ be independent random variables, $$ Z_n=\sum_{i=1}^n\zeta_i,\qquad \overline{Z}_n=\max_{k\leq n}Z_k,\qquad Z=\overline{Z}_\infty. $$ It is well known that if $\zeta_i$ are identically distributed, then $Z$ is a proper random variable when ${\mathbf{E}\zeta_i=-a<0}$, and $Z=\infty$ a.s. when $a=0$. The limiting distribution for $\overline{Z}_n$ as $n\to\infty$, $a\to 0$ (in the triangular array scheme) when $\mathbf{E}\zeta_i^2<\infty$ is well studied (see, e.g., [J. F. C. Kingman, J. Roy. Statist. Soc. Ser. B, 24 (1962), pp. 383–392], [Yu. V. Prokhorov, Litov. Math. Sb., 3 (1963), pp. 199–204 (in Russian)], and [A. A. Borovkov, Stochastic Process in Queueing Theory, Springer-Verlag, New York, 1976]). In the present paper, we study the limiting distribution for $\overline{Z}_n$ as $\mathbf{E}\zeta_i\to 0$, $n\to\infty$, in the case when $\mathbf{E}\zeta_i^2=\infty$ and the summands $\zeta_i$ are nonidentically distributed.
Keywords: random walks, maxima of partial sums, transient phenomena, nonidentically distributed summands, infinite variance.
Mots-clés : convergence to stable processes
@article{TVP_2005_50_2_a1,
     author = {A. A. Borovkov},
     title = {Transient phenomena for random walks with nonidential jumps having nonidetically infinite variances},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {224--240},
     year = {2005},
     volume = {50},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2005_50_2_a1/}
}
TY  - JOUR
AU  - A. A. Borovkov
TI  - Transient phenomena for random walks with nonidential jumps having nonidetically infinite variances
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2005
SP  - 224
EP  - 240
VL  - 50
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TVP_2005_50_2_a1/
LA  - ru
ID  - TVP_2005_50_2_a1
ER  - 
%0 Journal Article
%A A. A. Borovkov
%T Transient phenomena for random walks with nonidential jumps having nonidetically infinite variances
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2005
%P 224-240
%V 50
%N 2
%U http://geodesic.mathdoc.fr/item/TVP_2005_50_2_a1/
%G ru
%F TVP_2005_50_2_a1
A. A. Borovkov. Transient phenomena for random walks with nonidential jumps having nonidetically infinite variances. Teoriâ veroâtnostej i ee primeneniâ, Tome 50 (2005) no. 2, pp. 224-240. http://geodesic.mathdoc.fr/item/TVP_2005_50_2_a1/

[1] Kingman J. F. C., “On queues in heavy traffic”, J. Roy. Statist. Soc. Ser. B, 24 (1962), 383–392 | MR | Zbl

[2] Prokhorov Yu. V., “Perekhodnye yavleniya v protsessakh massovogo obsluzhivaniya”, Litov. matem. sb., 1 (1963), 199–206

[3] Borovkov A. A., Veroyatnostnye protsessy v teorii massovogo obsluzhivaniya, Nauka, M., 1972, 367 pp. | MR

[4] Cohen J. W., “Random walk with a heavy-tailed jump distribution”, Queueing Syst., 40:1 (2002), 35–73 | DOI | MR | Zbl

[5] Boxma O. J., Cohen J. W., “Heavy-traffic analysis for the GI/G/1 queue with heavy-tailed distributions”, Queueing Systems Theory Appl., 33:1–3 (1999), 177–204 | DOI | MR | Zbl

[6] Cohen J. W., “A heavy-traffic theorem for the GI/G/1 queue with Pareto-type service time distribution”, J. Appl. Math. Stochastic Anal., 11:3 (1998), 247–254 | DOI | MR | Zbl

[7] Gnedenko B. V., Kolmogorov A. N., Predelnye raspredeleniya dlya summ nezavisimykh sluchainykh velichin, Gostekhizdat, M., 1949, 264 pp. | MR

[8] Billingsli P., Skhodimost veroyatnostnykh mer, Nauka, M., L., 1977, 352 pp. | MR

[9] Borovkov A. A., “Bolshie ukloneniya dlya sluchainykh bluzhdanii s raznoraspredelennymi skachkami, imeyuschimi beskonechnuyu dispersiyu”, Sib. matem. zhurn., 46:1 (2005), 46–70 | MR | Zbl

[10] Gradshtein I. S., Ryzhik I. M., Tablitsy integralov, summ, ryadov i proizvedenii, Fizmatgiz, M., 1962