Integral limit theorems for nonlinear boundary crossing time
Teoriâ veroâtnostej i ee primeneniâ, Tome 50 (2005) no. 1, pp. 158-161 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper studies integral limit theorems for nonlinear boundary crossing time by random walk with infinite variance.
Keywords: random walk, nonlinear boundary crossing time, integral limit theoremю.
@article{TVP_2005_50_1_a9,
     author = {F. G. Ragimov},
     title = {Integral limit theorems for nonlinear boundary crossing time},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {158--161},
     year = {2005},
     volume = {50},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2005_50_1_a9/}
}
TY  - JOUR
AU  - F. G. Ragimov
TI  - Integral limit theorems for nonlinear boundary crossing time
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2005
SP  - 158
EP  - 161
VL  - 50
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TVP_2005_50_1_a9/
LA  - ru
ID  - TVP_2005_50_1_a9
ER  - 
%0 Journal Article
%A F. G. Ragimov
%T Integral limit theorems for nonlinear boundary crossing time
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2005
%P 158-161
%V 50
%N 1
%U http://geodesic.mathdoc.fr/item/TVP_2005_50_1_a9/
%G ru
%F TVP_2005_50_1_a9
F. G. Ragimov. Integral limit theorems for nonlinear boundary crossing time. Teoriâ veroâtnostej i ee primeneniâ, Tome 50 (2005) no. 1, pp. 158-161. http://geodesic.mathdoc.fr/item/TVP_2005_50_1_a9/

[1] Woodroofe M., Nonlinear Renewal Theory in Sequential Analysis, SIAM, Philadelphia, PA, 1982, 119 pp. | MR

[2] Novikov A. A., “O vremeni peresecheniya odnostoronnei nelineinoi granitsy summami nezavisimykh sluchainykh velichin”, Teoriya veroyatn. i ee primen., 27:4 (1982), 643–656 | MR | Zbl

[3] Ragimov F. G., “Asimptoticheskoe razlozhenie raspredeleniya vremeni peresecheniya nelineinykh granits”, Teoriya veroyatn. i ee primen., 37:3 (1992), 580–583 | MR | Zbl

[4] Mogyoródi J., “On limiting distributions for sums of a random number of independent random variables”, Magyar Tud. Akad. Mat. Kutató Int. Közl., 6:3 (1961), 365–371 | MR | Zbl

[5] Feller V., Vvedenie v teoriyu veroyatnostei i ee prilozheniya, Mir, M., 1984, 752 pp. | MR