Power variation and time change
Teoriâ veroâtnostej i ee primeneniâ, Tome 50 (2005) no. 1, pp. 115-130 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper provides limit distribution results for power variation, that is, sums of powers of absolute increments under nonequidistant subdivisions of time and for certain types of time-changed Brownian motion and $\alpha$-stable processes. Special cases of these processes are stochastic volatility models used extensively in financial econometrics.
Keywords: power variation, realized variance, semimartingales, stochastic volatility, time change.
Mots-clés : $r$-variation
@article{TVP_2005_50_1_a5,
     author = {O. E. Barndorff-Nielsen and N. Shephard},
     title = {Power variation and time change},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {115--130},
     year = {2005},
     volume = {50},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TVP_2005_50_1_a5/}
}
TY  - JOUR
AU  - O. E. Barndorff-Nielsen
AU  - N. Shephard
TI  - Power variation and time change
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2005
SP  - 115
EP  - 130
VL  - 50
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TVP_2005_50_1_a5/
LA  - en
ID  - TVP_2005_50_1_a5
ER  - 
%0 Journal Article
%A O. E. Barndorff-Nielsen
%A N. Shephard
%T Power variation and time change
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2005
%P 115-130
%V 50
%N 1
%U http://geodesic.mathdoc.fr/item/TVP_2005_50_1_a5/
%G en
%F TVP_2005_50_1_a5
O. E. Barndorff-Nielsen; N. Shephard. Power variation and time change. Teoriâ veroâtnostej i ee primeneniâ, Tome 50 (2005) no. 1, pp. 115-130. http://geodesic.mathdoc.fr/item/TVP_2005_50_1_a5/

[1] Andersen T. G., Bollerslev T., Diebold F. X., “Parametric and nonparametric volatility measurement”, Handbook of Financial Econometrics, eds. Y. Ait-Sahalia and L. P. Hansen, North-Holland, Amsterdam, 2005 (to appear) | Zbl

[2] Barndorff-Nielsen O. E., “Superposition of Ornstein–Uhlenbeck type processes”, Teoriya veroyatn. i ee primen., 45:2 (2000), 289–311 | MR | Zbl

[3] Barndorff-Nielsen O. E., Graversen S. E., Jacod J., Podolskij M., Shephard N., A central limit theorem for realized power and bipower variations of continuous semimartingales, Economics working paper 2004-W29, Nuffield College, Oxford, 2004

[4] Barndorff-Nielsen O. E., Nicolato E., Shephard N., “Some recent developments in stochastic volatility modelling”, Quantitative Finance, 2:1 (2002), 11–23 | DOI | MR

[5] Barndorff-Nielsen O. E., Shephard N., “Modelling by Lévy processes for financial econometrics”, Lévy Processes. Theory and Applications, eds. O. E. Barndorff-Nielsen, T. Mikosch, and S. Resnick, Birkhäuser, Boston, 2001, 283–318 | MR | Zbl

[6] Barndorff-Nielsen O. E., Shephard N., “Non-Gaussian Ornstein–Uhlenbeck-based models and some of their uses in financial economics”, J. Roy. Statist. Soc., Ser. B, 63:2 (2001), 167–241 | DOI | MR | Zbl

[7] Barndorff-Nielsen O. E., Shephard N., “Econometric analysis of realized volatility and its use in estimating stochastic volatility models”, J. Roy. Statist. Soc., Ser. B, 64:2 (2002), 253–280 | DOI | MR | Zbl

[8] Barndorff-Nielsen O. E., Shephard N., “Realized power variation and stochastic volatility”, Bernoulli, 9:2 (2003), 243–265 ; Corrections: ibid. 6, 1109–1111 | DOI | MR | Zbl | MR | Zbl

[9] Barndorff-Nielsen O. E., Shephard N., “Econometric analysis of realized covariation: high frequency covariance, regression, and correlation in financial economics”, Econometrica, 72:3 (2004), 885–925 | DOI | MR | Zbl

[10] Bass R. F., Hambly B. M., Lyons T. J., “Extending the Wong–Zakai theorem to reversible Markov processes”, J. Eur. Math. Soc., 4 (2002), 237–269 | DOI | MR | Zbl

[11] Dudley R. M., “Fréchet differentiability, $p$-variation and uniform Donsker classes”, Ann. Probab., 20:4 (1992), 1968–1982 | DOI | MR | Zbl

[12] Dudley R. M., Norvaiša R., An introduction to $p$-variation and Young integrals; with emphasis on sample functions of stochastic processes, MaPhySto Lecture Notes No 1998-1, Aarhus Univ., MaPhySto, Aarhus, 1998 | Zbl

[13] Dudley R. M., Norvaiša R., “Product integrals, Young integrals and $p$-variation”, Lecture Notes in Math., 1703, 1999, 73–208 | MR

[14] Dudley R. M., Norvaiša R., Qian J., “Bibliographies on $p$-variations and $\phi$-variation”, Lecture Notes in Math., 1703, 1999, 241–261 | MR

[15] Feller V., Vvedenie v teoriyu veroyatnostei i ee prilozheniya, v. 2, Mir, M., 1984, 751 pp.

[16] Fristedt B., Taylor S. J., “Strong variation for the sample functions of a stable process”, Duke Math. J., 40 (1973), 259–278 | DOI | MR | Zbl

[17] Gnedenko B. V., Kolmogorov A. N., Predelnye raspredeleniya dlya summ nezavisimykh sluchainykh velichin, Gostekhizdat, M., L., 1949, 264 pp. | MR

[18] Hudson W. N., Mason J. D., “Variational sums for additive processes”, Proc. Amer. Math. Soc., 55:2 (1976), 395–399 | DOI | MR | Zbl

[19] Jacod J., Limit of random measures associated with the increments of a Brownian semimartingale, Preprint No 120, Laboratoire de Probabilites, Universite P. et M. Curie, Paris, 1994

[20] Jacod J., Protter P., “Asymptotic error distributions for the Euler method for stochastic differential equations”, Ann. Probab., 26 (1998), 267–307 | DOI | MR | Zbl

[21] Kallsen J., Shiryaev A. N., “Time change representation of stochastic integrals”, Teoriya veroyatn. i ee primen., 46:3 (2001), 579–585 | MR | Zbl

[22] Lépingle D., “La variation d'ordre $p$ des semi-martingales”, Z. Wahrscheinlichkeitstheor. Verw. Geb., 36:4 (1976), 295–316 | DOI | MR | Zbl

[23] Loève M., Probability Theory, v. I, Springer-Verlag, New York, 1977, 425 pp. | MR | Zbl

[24] Lyons T., “Differential equations driven by rough signals. I. An extension of an inequality by L. C. Young”, Math. Res. Lett., 1:4 (1994), 451–464 | MR | Zbl

[25] Mikosch T., Norvaiša R., “Stochastic integral equations without probability”, Bernoulli, 6:3 (2000), 401–434 | DOI | MR | Zbl

[26] Mykland P. A., Zhang L., “ANOVA for diffusions”, Ann. Statist., 33 (2005) (to appear)

[27] Sato K., Lévy Processes and Infinitely Divisible Distributions, Cambridge Univ. Press, Cambridge, 1999, 486 pp. | MR

[28] Shiryaev A. N., Osnovy stokhasticheskoi finansovoi matematiki, v. 1, 2, FAZIS, M., 2004, 512 pp.; 544 с.

[29] Woerner J., “Variational sums and power variation: a unifying approach to model selection and estimation in semimartingale models”, Statist. Decisions, 21:1 (2003), 47–68 | DOI | MR | Zbl

[30] Young L. C., “An inequality of the Hölder type, connected with Stieltjes integration”, Acta Math., 67 (1936), 251–282 | DOI | MR