Mots-clés : $r$-variation
@article{TVP_2005_50_1_a5,
author = {O. E. Barndorff-Nielsen and N. Shephard},
title = {Power variation and time change},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {115--130},
year = {2005},
volume = {50},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TVP_2005_50_1_a5/}
}
O. E. Barndorff-Nielsen; N. Shephard. Power variation and time change. Teoriâ veroâtnostej i ee primeneniâ, Tome 50 (2005) no. 1, pp. 115-130. http://geodesic.mathdoc.fr/item/TVP_2005_50_1_a5/
[1] Andersen T. G., Bollerslev T., Diebold F. X., “Parametric and nonparametric volatility measurement”, Handbook of Financial Econometrics, eds. Y. Ait-Sahalia and L. P. Hansen, North-Holland, Amsterdam, 2005 (to appear) | Zbl
[2] Barndorff-Nielsen O. E., “Superposition of Ornstein–Uhlenbeck type processes”, Teoriya veroyatn. i ee primen., 45:2 (2000), 289–311 | MR | Zbl
[3] Barndorff-Nielsen O. E., Graversen S. E., Jacod J., Podolskij M., Shephard N., A central limit theorem for realized power and bipower variations of continuous semimartingales, Economics working paper 2004-W29, Nuffield College, Oxford, 2004
[4] Barndorff-Nielsen O. E., Nicolato E., Shephard N., “Some recent developments in stochastic volatility modelling”, Quantitative Finance, 2:1 (2002), 11–23 | DOI | MR
[5] Barndorff-Nielsen O. E., Shephard N., “Modelling by Lévy processes for financial econometrics”, Lévy Processes. Theory and Applications, eds. O. E. Barndorff-Nielsen, T. Mikosch, and S. Resnick, Birkhäuser, Boston, 2001, 283–318 | MR | Zbl
[6] Barndorff-Nielsen O. E., Shephard N., “Non-Gaussian Ornstein–Uhlenbeck-based models and some of their uses in financial economics”, J. Roy. Statist. Soc., Ser. B, 63:2 (2001), 167–241 | DOI | MR | Zbl
[7] Barndorff-Nielsen O. E., Shephard N., “Econometric analysis of realized volatility and its use in estimating stochastic volatility models”, J. Roy. Statist. Soc., Ser. B, 64:2 (2002), 253–280 | DOI | MR | Zbl
[8] Barndorff-Nielsen O. E., Shephard N., “Realized power variation and stochastic volatility”, Bernoulli, 9:2 (2003), 243–265 ; Corrections: ibid. 6, 1109–1111 | DOI | MR | Zbl | MR | Zbl
[9] Barndorff-Nielsen O. E., Shephard N., “Econometric analysis of realized covariation: high frequency covariance, regression, and correlation in financial economics”, Econometrica, 72:3 (2004), 885–925 | DOI | MR | Zbl
[10] Bass R. F., Hambly B. M., Lyons T. J., “Extending the Wong–Zakai theorem to reversible Markov processes”, J. Eur. Math. Soc., 4 (2002), 237–269 | DOI | MR | Zbl
[11] Dudley R. M., “Fréchet differentiability, $p$-variation and uniform Donsker classes”, Ann. Probab., 20:4 (1992), 1968–1982 | DOI | MR | Zbl
[12] Dudley R. M., Norvaiša R., An introduction to $p$-variation and Young integrals; with emphasis on sample functions of stochastic processes, MaPhySto Lecture Notes No 1998-1, Aarhus Univ., MaPhySto, Aarhus, 1998 | Zbl
[13] Dudley R. M., Norvaiša R., “Product integrals, Young integrals and $p$-variation”, Lecture Notes in Math., 1703, 1999, 73–208 | MR
[14] Dudley R. M., Norvaiša R., Qian J., “Bibliographies on $p$-variations and $\phi$-variation”, Lecture Notes in Math., 1703, 1999, 241–261 | MR
[15] Feller V., Vvedenie v teoriyu veroyatnostei i ee prilozheniya, v. 2, Mir, M., 1984, 751 pp.
[16] Fristedt B., Taylor S. J., “Strong variation for the sample functions of a stable process”, Duke Math. J., 40 (1973), 259–278 | DOI | MR | Zbl
[17] Gnedenko B. V., Kolmogorov A. N., Predelnye raspredeleniya dlya summ nezavisimykh sluchainykh velichin, Gostekhizdat, M., L., 1949, 264 pp. | MR
[18] Hudson W. N., Mason J. D., “Variational sums for additive processes”, Proc. Amer. Math. Soc., 55:2 (1976), 395–399 | DOI | MR | Zbl
[19] Jacod J., Limit of random measures associated with the increments of a Brownian semimartingale, Preprint No 120, Laboratoire de Probabilites, Universite P. et M. Curie, Paris, 1994
[20] Jacod J., Protter P., “Asymptotic error distributions for the Euler method for stochastic differential equations”, Ann. Probab., 26 (1998), 267–307 | DOI | MR | Zbl
[21] Kallsen J., Shiryaev A. N., “Time change representation of stochastic integrals”, Teoriya veroyatn. i ee primen., 46:3 (2001), 579–585 | MR | Zbl
[22] Lépingle D., “La variation d'ordre $p$ des semi-martingales”, Z. Wahrscheinlichkeitstheor. Verw. Geb., 36:4 (1976), 295–316 | DOI | MR | Zbl
[23] Loève M., Probability Theory, v. I, Springer-Verlag, New York, 1977, 425 pp. | MR | Zbl
[24] Lyons T., “Differential equations driven by rough signals. I. An extension of an inequality by L. C. Young”, Math. Res. Lett., 1:4 (1994), 451–464 | MR | Zbl
[25] Mikosch T., Norvaiša R., “Stochastic integral equations without probability”, Bernoulli, 6:3 (2000), 401–434 | DOI | MR | Zbl
[26] Mykland P. A., Zhang L., “ANOVA for diffusions”, Ann. Statist., 33 (2005) (to appear)
[27] Sato K., Lévy Processes and Infinitely Divisible Distributions, Cambridge Univ. Press, Cambridge, 1999, 486 pp. | MR
[28] Shiryaev A. N., Osnovy stokhasticheskoi finansovoi matematiki, v. 1, 2, FAZIS, M., 2004, 512 pp.; 544 с.
[29] Woerner J., “Variational sums and power variation: a unifying approach to model selection and estimation in semimartingale models”, Statist. Decisions, 21:1 (2003), 47–68 | DOI | MR | Zbl
[30] Young L. C., “An inequality of the Hölder type, connected with Stieltjes integration”, Acta Math., 67 (1936), 251–282 | DOI | MR