Continuous ensembles and the capacity of infinite-dimensional quantum channels
Teoriâ veroâtnostej i ee primeneniâ, Tome 50 (2005) no. 1, pp. 98-114 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper is devoted to the study of $\chi$-capacity, closely related to the classical capacity of infinite-dimensional quantum channels. For such channels generalized ensembles are defined as probability measures on the set of all quantum states. We establish the compactness of the set of generalized ensembles with averages in an arbitrary compact subset of states. This result enables us to obtain a sufficient condition for the existence of the optimal generalized ensemble for an infinite-dimensional channel with input constraint. This condition is shown to be fulfilled for Bosonic Gaussian channels with constrained mean energy. In the case of convex constraints, a characterization of the optimal generalized ensemble extending the “maximal distance property” is obtained.
Keywords: quantum channel, $\chi$-capacity, generalized ensemble.
@article{TVP_2005_50_1_a4,
     author = {A. S. Holevo and M. E. Shirokov},
     title = {Continuous ensembles and the capacity of infinite-dimensional quantum channels},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {98--114},
     year = {2005},
     volume = {50},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2005_50_1_a4/}
}
TY  - JOUR
AU  - A. S. Holevo
AU  - M. E. Shirokov
TI  - Continuous ensembles and the capacity of infinite-dimensional quantum channels
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2005
SP  - 98
EP  - 114
VL  - 50
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TVP_2005_50_1_a4/
LA  - ru
ID  - TVP_2005_50_1_a4
ER  - 
%0 Journal Article
%A A. S. Holevo
%A M. E. Shirokov
%T Continuous ensembles and the capacity of infinite-dimensional quantum channels
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2005
%P 98-114
%V 50
%N 1
%U http://geodesic.mathdoc.fr/item/TVP_2005_50_1_a4/
%G ru
%F TVP_2005_50_1_a4
A. S. Holevo; M. E. Shirokov. Continuous ensembles and the capacity of infinite-dimensional quantum channels. Teoriâ veroâtnostej i ee primeneniâ, Tome 50 (2005) no. 1, pp. 98-114. http://geodesic.mathdoc.fr/item/TVP_2005_50_1_a4/

[1] Dell'Antonio G. F., “On the limits of sequences of normal states”, Comm. Pure Appl. Math., 20 (1967), 413–429 | MR

[2] Billingsli P., Skhodimost veroyatnostnykh mer, Nauka, M., 1977, 352 pp. | MR

[3] Donald M. J., “Further results on the relative entropy”, Math. Proc. Cambridge Philos. Soc., 101:2 (1987), 363–374 | DOI | MR

[4] Giovannetti V., Guha S., Lloyd S., Maccone L., Shapiro J. H., Yuen H. P., “Classical capacity of the lossy bosonic channels: the exact solution”, Phys. Rev. Lett., 92 (2004), 027902, e-print, arXiv: quant-ph/0308012 | DOI

[5] Hille E., Phillips R. S., Functional Analysis and Semi-groups, Amer. Math. Soc., Providence, RI, 1957, 808 pp. | MR | Zbl

[6] Kholevo A. S., Vvedenie v kvantovuyu teoriyu informatsii, MTsNMO, M., 2002, 126 pp.

[7] Kholevo A. S., Statisticheskaya struktura kvantovoi teorii, In-t kompyut. issled., M., Izhevsk, 2003, 191 pp.

[8] Kholevo A. S., “Klassicheskie propusknye sposobnosti kvantovogo kanala s ogranicheniem na vkhode”, Teoriya veroyatn. i ee primen., 48:2 (2003), 359–374 | MR | Zbl

[9] Holevo A. S., Werner R. F., “Evaluating capacities of bosonic Gaussian channels”, Phys. Rev. A, 63 (2001), 032312 | DOI

[10] Holevo A. S., Shirokov M. E., “On Shor's channel extension and constrained channels”, Comm. Math. Phys., 249:2 (2004), 417–430 | DOI | MR | Zbl

[11] Lindblad G., “Expectations and entropy inequalities for finite quantum systems”, Comm. Math. Phys., 39:2 (1974), 111–119 | DOI | MR | Zbl

[12] Prokhorov Yu. V., “Skhodimost sluchainykh protsessov i predelnye teoremy teorii veroyatnostei”, Teoriya veroyatn. i ee primen., 1:2 (1956), 177–238 | MR | Zbl

[13] Parthasarathy K. R., Probability Measures on Metric Spaces, Academic Press, New York, London, 1967, 276 pp. | MR | Zbl

[14] Sarymsakov T. A., Vvedenie v kvantovuyu teoriyu veroyatnostei, Fan, Tashkent, 1985, 184 pp. | MR

[15] Schumacher B., Westmoreland M., Optimal signal ensembles, arXiv: quant-ph/9912122

[16] Serafini A., Eisert J., Wolf M. M., Multiplicativity of maximal output purities of Gaussian channels under Gaussian inputs, 2004, arXiv: quant-ph/0406065

[17] Shirokov M. E., The Holevo capacity of infinite dimensional channels, 2004, arXiv: quant-ph/0408009

[18] Shor P. W., “Equivalence of additivity questions in quantum information theory”, Comm. Math. Phys., 246:3 (2004), 453–472 | DOI | MR | Zbl

[19] Wehrl A., “General properties of entropy”, Rev. Modern Phys., 50:2 (1978), 221–260 | DOI | MR