Continuous ensembles and the capacity of infinite-dimensional quantum channels
Teoriâ veroâtnostej i ee primeneniâ, Tome 50 (2005) no. 1, pp. 98-114
Voir la notice de l'article provenant de la source Math-Net.Ru
This paper is devoted to the study of $\chi$-capacity, closely related to the classical capacity of infinite-dimensional quantum channels. For such channels generalized ensembles are defined as probability measures on the set of all quantum states. We establish the compactness of the set of generalized ensembles with averages in an arbitrary compact subset of states. This result enables us to obtain a sufficient condition for the existence of the optimal generalized ensemble for an infinite-dimensional channel with input constraint. This condition is shown to be fulfilled for Bosonic Gaussian channels with constrained mean energy. In the case of convex constraints, a characterization of the optimal generalized ensemble extending the “maximal distance property” is obtained.
Keywords:
quantum channel, $\chi$-capacity, generalized ensemble.
@article{TVP_2005_50_1_a4,
author = {A. S. Holevo and M. E. Shirokov},
title = {Continuous ensembles and the capacity of infinite-dimensional quantum channels},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {98--114},
publisher = {mathdoc},
volume = {50},
number = {1},
year = {2005},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2005_50_1_a4/}
}
TY - JOUR AU - A. S. Holevo AU - M. E. Shirokov TI - Continuous ensembles and the capacity of infinite-dimensional quantum channels JO - Teoriâ veroâtnostej i ee primeneniâ PY - 2005 SP - 98 EP - 114 VL - 50 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_2005_50_1_a4/ LA - ru ID - TVP_2005_50_1_a4 ER -
A. S. Holevo; M. E. Shirokov. Continuous ensembles and the capacity of infinite-dimensional quantum channels. Teoriâ veroâtnostej i ee primeneniâ, Tome 50 (2005) no. 1, pp. 98-114. http://geodesic.mathdoc.fr/item/TVP_2005_50_1_a4/