Compactness and the concentration functions of the
Teoriâ veroâtnostej i ee primeneniâ, Tome 50 (2005) no. 1, pp. 81-97 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A relationship is investigated between the compactness conditions of the distributions of sums of independent identically distributed random variables under an appropriate scaling and the behavior of the sequence of concentration functions of these sums.
Keywords: independent identically distributed random variables, sum, median, compactness, finite noncompactness, Levy concentration function, censored variance, majorizied varying function, unimodal distribution.
Mots-clés : convolution, quantile
@article{TVP_2005_50_1_a3,
     author = {B. A. Rogozin},
     title = {Compactness and the concentration functions of the},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {81--97},
     year = {2005},
     volume = {50},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2005_50_1_a3/}
}
TY  - JOUR
AU  - B. A. Rogozin
TI  - Compactness and the concentration functions of the
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2005
SP  - 81
EP  - 97
VL  - 50
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TVP_2005_50_1_a3/
LA  - ru
ID  - TVP_2005_50_1_a3
ER  - 
%0 Journal Article
%A B. A. Rogozin
%T Compactness and the concentration functions of the
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2005
%P 81-97
%V 50
%N 1
%U http://geodesic.mathdoc.fr/item/TVP_2005_50_1_a3/
%G ru
%F TVP_2005_50_1_a3
B. A. Rogozin. Compactness and the concentration functions of the. Teoriâ veroâtnostej i ee primeneniâ, Tome 50 (2005) no. 1, pp. 81-97. http://geodesic.mathdoc.fr/item/TVP_2005_50_1_a3/

[1] Doeblin W., “Sur l'ensemble de puissances d'une loi de probabilité”, Studia Math., 9 (1940), 71–96 | MR

[2] Feller W., “On regular variation and local limit theorems”, Contributions to Probability Theory, Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, Part 1, v. II, Univ. of California Press, Berkeley, 1967, 373–388 | MR | Zbl

[3] Hall P., “Order of magnitude of the concentration function”, Proc. Amer. Math. Soc., 89:1 (1983), 141–144 | DOI | MR | Zbl

[4] Khengartner V., Teodoresku R., Funktsii kontsentratsii, Nauka, M., 1980, 176 pp. | MR

[5] Seneta E., Pravilno menyayuschiesya funktsii, Nauka, M., 1985, 141 pp. | MR | Zbl

[6] Borovkov A. A., Veroyatnostnye protsessy v teorii massovogo obsluzhivaniya, Nauka, M., 1972, 368 pp. | MR

[7] Rogozin B. A., “Tauberovskaya teorema dlya mazhoriruemo menyayuschikhsya vozrastayuschikh funktsii”, Sib. matem. zhurn., 43:2 (2002), 442–445 | MR | Zbl

[8] Kesten H., “A sharper form of the Doeblin–Lévy–Kolmogorov–Rogozin inequality for concentration functions”, Math. Scand., 25:1 (1969), 133–144 | MR | Zbl

[9] Rogozin B. A., “Predelnaya teorema dlya otnoshenii funktsii kontsentratsii”, Teoriya veroyatn. i ee primen., 46:4 (2001), 801–803 | MR | Zbl

[10] Rogozin B. A., “Tauberovy teoremy dlya mazhoriruemo menyayuschikhsya ubyvayuschikh funktsii”, Teoriya veroyatn. i ee primen., 47:2 (2002), 357–363 | MR | Zbl

[11] Petrov V. V., Summy nezavisimykh sluchainykh velichin, Nauka, M., 1972, 416 pp. | MR

[12] Loev M., Teoriya veroyatnostei, IL, M., 1962, 719 pp.

[13] Khille E., Fillips R., Funktsionalnyi analiz i polugruppy, IL, M., 1962, 829 pp. | MR

[14] Rogozin B. A., “Ob odnoi otsenke funktsii kontsentratsii”, Teoriya veroyatn. i ee primen., 6:1 (1961), 103–105 | MR | Zbl

[15] Borovkov A. A., Teoriya veroyatnostei, Nauka, M., 1986, 431 pp. | MR | Zbl

[16] Rogozin B. A., “O maksimume plotnosti veroyatnosti summy sluchainykh velichin s odnovershinnymi raspredeleniyami”, Litov. matem. sb., 5:3 (1965), 499–503 | MR | Zbl

[17] Gnedenko B. V., Kolmogorov A. N., Predelnye raspredeleniya dlya summ nezavisimykh sluchainykh velichin, Gostekhizdat, M., L., 1949, 264 pp. | MR