Constructing a stochastic integral of a nonrandom function without orthogonality of the noise
Teoriâ veroâtnostej i ee primeneniâ, Tome 50 (2005) no. 1, pp. 52-80 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper the construction of a stochastic integral of a nonrandom function is suggested without the classical orthogonality condition of the noise. This construction includes some known constructions of univariate and multiple stochastic integrals. Conditions providing the existence of this integral are specified for noises generated by random processes with nonorthogonal increments from certain classes which are rich enough.
Keywords: stochastic integral, multiple stochastic integral, Gaussian processes, regular fractional Brownian motion.
Mots-clés : noise
@article{TVP_2005_50_1_a2,
     author = {I. S. Borisov and A. A. Bystrov},
     title = {Constructing a stochastic integral of a nonrandom function without orthogonality of the noise},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {52--80},
     year = {2005},
     volume = {50},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2005_50_1_a2/}
}
TY  - JOUR
AU  - I. S. Borisov
AU  - A. A. Bystrov
TI  - Constructing a stochastic integral of a nonrandom function without orthogonality of the noise
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2005
SP  - 52
EP  - 80
VL  - 50
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TVP_2005_50_1_a2/
LA  - ru
ID  - TVP_2005_50_1_a2
ER  - 
%0 Journal Article
%A I. S. Borisov
%A A. A. Bystrov
%T Constructing a stochastic integral of a nonrandom function without orthogonality of the noise
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2005
%P 52-80
%V 50
%N 1
%U http://geodesic.mathdoc.fr/item/TVP_2005_50_1_a2/
%G ru
%F TVP_2005_50_1_a2
I. S. Borisov; A. A. Bystrov. Constructing a stochastic integral of a nonrandom function without orthogonality of the noise. Teoriâ veroâtnostej i ee primeneniâ, Tome 50 (2005) no. 1, pp. 52-80. http://geodesic.mathdoc.fr/item/TVP_2005_50_1_a2/

[1] Wiener N., “Differential space”, J. Math. Phys., 2 (1923), 131–179

[2] Kolmogorov A. H., “Krivye v gilbertovskom prostranstve, invariantnye po otnosheniyu k odnoparametricheskoi gruppe dvizhenii”, Dokl. AN SSSR, 26:1 (1940), 6–9 | Zbl

[3] Cramér H., “On the theory of stationary random processes”, Ann. Math., 41 (1940), 215–230 | DOI | MR | Zbl

[4] Itô K., “Stochastic integral”, Proc. Imp. Acad. Tokyo, 20 (1944), 519–524 | DOI | MR | Zbl

[5] Major P., Multiple Wiener–Ito integrals, Lecture Notes in Math., 849, 1981, 1–127 pp. | MR | Zbl

[6] Loev M., Teoriya veroyatnostei, IL, M., 1962, 719 pp.

[7] Cambanis S., Huang S. T., “Stochastic and multiple Wiener integrals for Gaussian processes”, Ann. Probab., 6:4 (1978), 585–614 | DOI | MR | Zbl

[8] Dasgupta A., Kallianpur G., “Multiple fractional integrals”, Probab. Theory Relat. Fields, 115:4 (1999), 505–525 | DOI | MR | Zbl

[9] Pipiras V., Taqqu M. S., “Integration questions related to fractional Brownian motion”, Probab. Theory Relat. Fields, 118:2 (2000), 251–291 | DOI | MR | Zbl

[10] Alòs E., Mazet O., Nualart D., “Stochastic calculus with respect to Gaussian processes”, Ann. Probab., 29:2 (2001), 766–801 | DOI | MR | Zbl

[11] Gikhman I. I., Skorokhod A. V., Vvedenie v teoriyu sluchainykh protsessov, Nauka, M., 1965, 656 pp. | MR | Zbl

[12] Kolmogorov A. N., Fomin S. V., Elementy teorii funktsii i funktsionalnogo analiza, Nauka, M., 1981, 543 pp. | MR

[13] Borovkov A. A., Teoriya veroyatnostei, Editorial URSS, M., 1999, 472 pp. | MR

[14] Billingsli P., Skhodimost veroyatnostnykh mer, Nauka, M., 1977, 352 pp. | MR

[15] Borisov I. S., “Ob odnom kriterii markovosti gaussovskikh sluchainykh protsessov”, Teoriya veroyatn. i ee primen., 27:4 (1982), 802–805 | MR | Zbl

[16] Besov O. V., Ilin V. P., Nikolskii S. M., Integralnye predstavleniya funktsii i teoremy vlozheniya, Nauka, M., 1996, 480 pp. | MR