Constructing a stochastic integral of a nonrandom function without orthogonality of the noise
Teoriâ veroâtnostej i ee primeneniâ, Tome 50 (2005) no. 1, pp. 52-80
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper the construction of a stochastic integral of a nonrandom function is suggested without the classical orthogonality condition of the noise. This construction includes some known constructions of univariate and multiple stochastic integrals. Conditions providing the existence of this integral are specified for noises generated by random processes with nonorthogonal increments from certain classes which are rich enough.
Keywords:
stochastic integral, multiple stochastic integral, Gaussian processes, regular fractional Brownian motion.
Mots-clés : noise
Mots-clés : noise
@article{TVP_2005_50_1_a2,
author = {I. S. Borisov and A. A. Bystrov},
title = {Constructing a stochastic integral of a nonrandom function without orthogonality of the noise},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {52--80},
publisher = {mathdoc},
volume = {50},
number = {1},
year = {2005},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2005_50_1_a2/}
}
TY - JOUR AU - I. S. Borisov AU - A. A. Bystrov TI - Constructing a stochastic integral of a nonrandom function without orthogonality of the noise JO - Teoriâ veroâtnostej i ee primeneniâ PY - 2005 SP - 52 EP - 80 VL - 50 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_2005_50_1_a2/ LA - ru ID - TVP_2005_50_1_a2 ER -
%0 Journal Article %A I. S. Borisov %A A. A. Bystrov %T Constructing a stochastic integral of a nonrandom function without orthogonality of the noise %J Teoriâ veroâtnostej i ee primeneniâ %D 2005 %P 52-80 %V 50 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/TVP_2005_50_1_a2/ %G ru %F TVP_2005_50_1_a2
I. S. Borisov; A. A. Bystrov. Constructing a stochastic integral of a nonrandom function without orthogonality of the noise. Teoriâ veroâtnostej i ee primeneniâ, Tome 50 (2005) no. 1, pp. 52-80. http://geodesic.mathdoc.fr/item/TVP_2005_50_1_a2/