A large deviations upper bound for the kernel mode estimator
Teoriâ veroâtnostej i ee primeneniâ, Tome 50 (2005) no. 1, pp. 189-200 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We prove a large deviations upper bound for the kernel estimator of the mode when this one corresponds to a strict maximum of a probability density function. Surprisingly, the convergence rate we obtain is faster than one could expect in view of the weak convergence rate of the studied estimator.
Keywords: density, Kernel estimator, large deviations principle.
Mots-clés : mode
@article{TVP_2005_50_1_a13,
     author = {A. Mokkadem and M. Pelletier and J. Worms},
     title = {A large deviations upper bound for the kernel mode estimator},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {189--200},
     year = {2005},
     volume = {50},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TVP_2005_50_1_a13/}
}
TY  - JOUR
AU  - A. Mokkadem
AU  - M. Pelletier
AU  - J. Worms
TI  - A large deviations upper bound for the kernel mode estimator
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2005
SP  - 189
EP  - 200
VL  - 50
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TVP_2005_50_1_a13/
LA  - en
ID  - TVP_2005_50_1_a13
ER  - 
%0 Journal Article
%A A. Mokkadem
%A M. Pelletier
%A J. Worms
%T A large deviations upper bound for the kernel mode estimator
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2005
%P 189-200
%V 50
%N 1
%U http://geodesic.mathdoc.fr/item/TVP_2005_50_1_a13/
%G en
%F TVP_2005_50_1_a13
A. Mokkadem; M. Pelletier; J. Worms. A large deviations upper bound for the kernel mode estimator. Teoriâ veroâtnostej i ee primeneniâ, Tome 50 (2005) no. 1, pp. 189-200. http://geodesic.mathdoc.fr/item/TVP_2005_50_1_a13/

[1] Eddy W. F., “Optimum kernel estimators of the mode”, Ann. Statist., 8:4 (1980), 870–882 | DOI | MR | Zbl

[2] Eddy W. F., “The asymptotic distributions of kernel estimators of the mode”, Z. Wahrscheinlichkeitstheor. Verw. Geb., 59:3 (1982), 279–290 | DOI | MR | Zbl

[3] Grund B., Hall P., “On the minimisation of $L^p$ error in mode estimation”, Ann. Statist., 23:6 (1995), 2264–2284 | DOI | MR | Zbl

[4] Konakov V. D., “Ob asimptoticheskoi normalnosti mody mnogomernykh raspredelenii.”, Teoriya veroyatn. i ee primen., 18:4 (1973), 836–842 | MR | Zbl

[5] Louani D., “Large deviations limit theorems for the kernel density estimator”, Scand. J. Statist., 25:1 (1998), 243–253 | DOI | MR | Zbl

[6] Mokkadem A., Pelletier M., “The law of the iterated logarithm for the multivariable kernel mode estimator”, ESAIM Probab. Statist., 7 (2003), 1–21 | DOI | MR | Zbl

[7] Nadaraya E. A., “O neparametricheskikh otsenkakh plotnosti veroyatnosti i regressii”, Teoriya veroyatn. i ee primen., 10:1 (1965), 199–203 | Zbl

[8] Novak S. Yu., “O mode neizvestnogo veroyatnostnogo raspredeleniya”, Teoriya veroyatn. i ee primen., 44:1 (1999), 119–123 | MR | Zbl

[9] Parzen E., “On estimation on of a probability density function and mode”, Ann. Math. Statist., 33 (1962), 1065–1076 | DOI | MR | Zbl

[10] Romano J., “On weak convergence and optimality of kernel density estimates of the mode”, Ann. Statist., 16:2 (1988), 629–647 | DOI | MR | Zbl

[11] Silverman B. W., “Weak and strong uniform consistency of the kernel estimate of a density and its derivatives”, Ann. Statist., 6:1 (1978), 177–184 | DOI | MR | Zbl

[12] Van Ryzin J., “On strong consistency of density estimates”, Ann. Math. Statist., 40 (1969), 1765–1772 | DOI | MR | Zbl

[13] Yamato H., “Sequential estimation of a continuous probability density function and mode”, Bull. Math. Statist., 14 (1971), 1–12 ; corrections: ibid. 15 (1972), 133 | MR | Zbl | Zbl

[14] Worms J., “Moderate deviations of some dependent variables. II: Some kernel estimators”, Math. Methods Statist., 10:2 (2001), 161–193 | MR | Zbl