Mots-clés : domain of attraction
@article{TVP_2005_50_1_a12,
author = {P. Mladenovi\'c},
title = {A generalization of the {Mejzler{\textendash}De} {Haan} theorem},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {177--189},
year = {2005},
volume = {50},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TVP_2005_50_1_a12/}
}
P. Mladenović. A generalization of the Mejzler–De Haan theorem. Teoriâ veroâtnostej i ee primeneniâ, Tome 50 (2005) no. 1, pp. 177-189. http://geodesic.mathdoc.fr/item/TVP_2005_50_1_a12/
[1] Balkema A. A., de Haan L., “On R. von Mises' condition for the domain of attraction of $\exp(-e^{-x})$”, Ann. Math. Statist., 43 (1972), 1352–1354 | DOI | MR | Zbl
[2] Barbour A. D., Holst L., Janson S., Poisson Approximation, Oxford Univ. Press, New York, 1992, 277 pp. | MR | Zbl
[3] Baum L. E., Billingsley P., “Asymptotic distributions for the coupon collector's problem”, Ann. Math. Statist., 36 (1965), 1835–1839 | DOI | MR | Zbl
[4] Békéssy A., “On classical occupancy problems. II: Sequential occupancy”, Magyar Tud. Akad. Mat. Kutató Int. Közl., 9 (1964), 133–141 | MR
[5] Bingham N., Goldie C., Teugels J., Regular Variation, Cambridge Univ. Press, Cambridge, 1987, 491 pp. | MR | Zbl
[6] Erdös P., Rényi A., “On a classical problem of probability theory”, Magyar Tud. Akad. Mat. Kutatö Int. Közl., 6:1–2 (1961), 215–220 | MR | Zbl
[7] Feller V., Vvedenie v teoriyu veroyatnostei i ee prilozheniya, v. 2, Mir, M., 1984
[8] Flatto L., “Limit theorems for some random variables associated with urn models”, Ann. Probab., 10:4 (1982), 927–934 | DOI | MR | Zbl
[9] Geluk J. L., de Haan L., Regular Variation, Extensions and Tauberian Theorems, Centre for Mathematics and Computer Science, Amsterdam, 1987, 132 pp. | MR | Zbl
[10] Gnedenko B. V., “Sur la distribution limite du terme maximum d'une série aléatoire”, Ann. Math., 44 (1943), 423–453 | DOI | MR | Zbl
[11] de Haan L., On Regular Variation and its Application to the Weak Convergence of Sample Extremes, Mathematisch Centrum, Amsterdam, 1970, 124 pp. | MR
[12] de Haan L., “A form of regular variation and its application to the domain of attraction of the double exponential distribution”, Z. Wahrscheinlichkeitstheor. verw. Geb., 17 (1971), 241–258 | DOI | MR | Zbl
[13] de Haan L., “Sample extremes: an elementary introduction”, Statist. Neerlandica, 30:4 (1976), 161–172 | DOI | MR | Zbl
[14] Hall P., “The rate of convergence of normal extremes”, J. Appl. Probab., 16:2 (1979), 433–439 | DOI | MR | Zbl
[15] Holst L., “Limit theorems for some occupancy and sequential occupancy problems”, Ann. Math. Statist., 42 (1971), 1671–1680 | DOI | MR | Zbl
[16] Holst L., “Some asymptotic results for occupancy problems”, Ann. Probab., 5:6 (1977), 1028–1035 | DOI | MR | Zbl
[17] Holst L., “On birthday, collectors, occupancy and other classical urn problems”, Internal Statist. Rev., 54:1 (1986), 15–27 | DOI | MR | Zbl
[18] Karamata J., “Sur un mode de croissance régulière des fonctions”, Mathematica (Cluj), 4 (1930), 38–53 | Zbl
[19] Karamata J., “Sur un mode de croissance régulière. Théorèmes fondamentaux”, Bull. Soc. Math. Prance, 61 (1933), 55–62 | MR
[20] Leadbetter M. R., Lindgren G., Rootzén H., Extremes and Related Properties of Random Sequences and Processes, Springer-Verlag, New York, Berlin, 1983, 336 pp. | MR | Zbl
[21] Marcus M., Pinsky M., “On the domain of attraction of $e^{-e^{-x}}$”, J. Math. Anal. Appl., 28 (1969), 440–449 | DOI | MR | Zbl
[22] Meizler D. G., “Ob odnoi teoreme B. V. Gnedenko”, Sb. trudov In-ta matem. AN USSR, 12, 1949, 31–35
[23] Mladenović P., “Limit theorems for the maximum terms of a sequence of random variables with marginal geometric distributions”, Extremes, 2:4 (1999), 405–419 | DOI | MR | Zbl
[24] Resnick S. I., Extreme Values, Regular Variation and Point Processes, Springer-Verlag, New York, 1987, 320 pp. | MR | Zbl
[25] Rootzén H., “The rate of convergence of extremes of stationary normal sequences”, Adv. Appl. Probab., 15:1 (1983), 54–80 | DOI | MR | Zbl
[26] Samuel-Cahn E., “Asymptotic distributions for occupancy and waiting time problems with positive probability of falling through the cells”, Ann. Probab., 2 (1974), 515–521 | DOI | MR | Zbl
[27] Seneta E., Pravilno menyayuschiesya funktsii, Nauka, M., 1985, 141 pp. | MR | Zbl