A generalization of the Mejzler–De Haan theorem
Teoriâ veroâtnostej i ee primeneniâ, Tome 50 (2005) no. 1, pp. 177-189 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $(k_n)$ be a sequence of positive integers such that $k_n\to~\infty$ as $n\to\infty$. Let $X^\ast_{n1},\dots,X^\ast_{nk_n}$, $n\inN$, be a double array of random variables such that for each $n$ the random variables $X^\ast_{n1}\dots X^\ast_{nk_n}$ are independent with a common distribution function $F_n$, and let us denote $M^\ast_n=\max\{X^\ast_{n1},\dots,X^\ast_{nk_n}\}$. We consider an example of double array random variables connected with a certain combinatorial waiting time problem (including both dependent and independent cases), where $k_n=n$ for all $n$ and the limiting distribution function for $M^\ast_n$ is $\Lambda(x)=\exp(-e^{-x})$, although none of the distribution functions $F_n$ belongs to the domain of attraction $D(\Lambda)$. We also generalize the Mejzler–de Haan theorem and give the necessary and sufficient conditions for the sequence $(F_n)$ under which there exist sequences $a_n>0$ and $b_n\in R$, $n\inN$, such that $F_n^{k_n}(a_nx+b_n)\to\exp(-e^{-x})$ as $n\to\infty$ for every real $x$.
Keywords: extreme value distributions, double array, regular variation, double exponential distribution.
Mots-clés : domain of attraction
@article{TVP_2005_50_1_a12,
     author = {P. Mladenovi\'c},
     title = {A generalization of the {Mejzler{\textendash}De} {Haan} theorem},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {177--189},
     year = {2005},
     volume = {50},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TVP_2005_50_1_a12/}
}
TY  - JOUR
AU  - P. Mladenović
TI  - A generalization of the Mejzler–De Haan theorem
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2005
SP  - 177
EP  - 189
VL  - 50
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TVP_2005_50_1_a12/
LA  - en
ID  - TVP_2005_50_1_a12
ER  - 
%0 Journal Article
%A P. Mladenović
%T A generalization of the Mejzler–De Haan theorem
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2005
%P 177-189
%V 50
%N 1
%U http://geodesic.mathdoc.fr/item/TVP_2005_50_1_a12/
%G en
%F TVP_2005_50_1_a12
P. Mladenović. A generalization of the Mejzler–De Haan theorem. Teoriâ veroâtnostej i ee primeneniâ, Tome 50 (2005) no. 1, pp. 177-189. http://geodesic.mathdoc.fr/item/TVP_2005_50_1_a12/

[1] Balkema A. A., de Haan L., “On R. von Mises' condition for the domain of attraction of $\exp(-e^{-x})$”, Ann. Math. Statist., 43 (1972), 1352–1354 | DOI | MR | Zbl

[2] Barbour A. D., Holst L., Janson S., Poisson Approximation, Oxford Univ. Press, New York, 1992, 277 pp. | MR | Zbl

[3] Baum L. E., Billingsley P., “Asymptotic distributions for the coupon collector's problem”, Ann. Math. Statist., 36 (1965), 1835–1839 | DOI | MR | Zbl

[4] Békéssy A., “On classical occupancy problems. II: Sequential occupancy”, Magyar Tud. Akad. Mat. Kutató Int. Közl., 9 (1964), 133–141 | MR

[5] Bingham N., Goldie C., Teugels J., Regular Variation, Cambridge Univ. Press, Cambridge, 1987, 491 pp. | MR | Zbl

[6] Erdös P., Rényi A., “On a classical problem of probability theory”, Magyar Tud. Akad. Mat. Kutatö Int. Közl., 6:1–2 (1961), 215–220 | MR | Zbl

[7] Feller V., Vvedenie v teoriyu veroyatnostei i ee prilozheniya, v. 2, Mir, M., 1984

[8] Flatto L., “Limit theorems for some random variables associated with urn models”, Ann. Probab., 10:4 (1982), 927–934 | DOI | MR | Zbl

[9] Geluk J. L., de Haan L., Regular Variation, Extensions and Tauberian Theorems, Centre for Mathematics and Computer Science, Amsterdam, 1987, 132 pp. | MR | Zbl

[10] Gnedenko B. V., “Sur la distribution limite du terme maximum d'une série aléatoire”, Ann. Math., 44 (1943), 423–453 | DOI | MR | Zbl

[11] de Haan L., On Regular Variation and its Application to the Weak Convergence of Sample Extremes, Mathematisch Centrum, Amsterdam, 1970, 124 pp. | MR

[12] de Haan L., “A form of regular variation and its application to the domain of attraction of the double exponential distribution”, Z. Wahrscheinlichkeitstheor. verw. Geb., 17 (1971), 241–258 | DOI | MR | Zbl

[13] de Haan L., “Sample extremes: an elementary introduction”, Statist. Neerlandica, 30:4 (1976), 161–172 | DOI | MR | Zbl

[14] Hall P., “The rate of convergence of normal extremes”, J. Appl. Probab., 16:2 (1979), 433–439 | DOI | MR | Zbl

[15] Holst L., “Limit theorems for some occupancy and sequential occupancy problems”, Ann. Math. Statist., 42 (1971), 1671–1680 | DOI | MR | Zbl

[16] Holst L., “Some asymptotic results for occupancy problems”, Ann. Probab., 5:6 (1977), 1028–1035 | DOI | MR | Zbl

[17] Holst L., “On birthday, collectors, occupancy and other classical urn problems”, Internal Statist. Rev., 54:1 (1986), 15–27 | DOI | MR | Zbl

[18] Karamata J., “Sur un mode de croissance régulière des fonctions”, Mathematica (Cluj), 4 (1930), 38–53 | Zbl

[19] Karamata J., “Sur un mode de croissance régulière. Théorèmes fondamentaux”, Bull. Soc. Math. Prance, 61 (1933), 55–62 | MR

[20] Leadbetter M. R., Lindgren G., Rootzén H., Extremes and Related Properties of Random Sequences and Processes, Springer-Verlag, New York, Berlin, 1983, 336 pp. | MR | Zbl

[21] Marcus M., Pinsky M., “On the domain of attraction of $e^{-e^{-x}}$”, J. Math. Anal. Appl., 28 (1969), 440–449 | DOI | MR | Zbl

[22] Meizler D. G., “Ob odnoi teoreme B. V. Gnedenko”, Sb. trudov In-ta matem. AN USSR, 12, 1949, 31–35

[23] Mladenović P., “Limit theorems for the maximum terms of a sequence of random variables with marginal geometric distributions”, Extremes, 2:4 (1999), 405–419 | DOI | MR | Zbl

[24] Resnick S. I., Extreme Values, Regular Variation and Point Processes, Springer-Verlag, New York, 1987, 320 pp. | MR | Zbl

[25] Rootzén H., “The rate of convergence of extremes of stationary normal sequences”, Adv. Appl. Probab., 15:1 (1983), 54–80 | DOI | MR | Zbl

[26] Samuel-Cahn E., “Asymptotic distributions for occupancy and waiting time problems with positive probability of falling through the cells”, Ann. Probab., 2 (1974), 515–521 | DOI | MR | Zbl

[27] Seneta E., Pravilno menyayuschiesya funktsii, Nauka, M., 1985, 141 pp. | MR | Zbl