On estimation of a location parameter in presence of an ancillary component
Teoriâ veroâtnostej i ee primeneniâ, Tome 50 (2005) no. 1, pp. 172-176

Voir la notice de l'article provenant de la source Math-Net.Ru

If $(X, Y)$ is an observation with distribution function $F(x-\theta,y)$, $\sigma^{2}=\textrm{var}(X)$, $\rho=\textrm{corr}(X,Y)$ and $I$ is the Fisher information on $\theta$ in $(X,Y)$, then $I\ge\{\sigma^2(1-\rho^2)\}^{-1}$. The equality sign holds under conditions closely related to the conditions for linearity of the Pitman estimator of $\theta$ from a sample from $F(x-\theta,y)$. The results are extensions of earlier results for the case when only the informative component $X$ is observed.
Keywords: Fisher information, Pitman estimator.
@article{TVP_2005_50_1_a11,
     author = {A. M. Kagan and C. R. Rao},
     title = {On estimation of a location parameter in presence of an ancillary component},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {172--176},
     publisher = {mathdoc},
     volume = {50},
     number = {1},
     year = {2005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TVP_2005_50_1_a11/}
}
TY  - JOUR
AU  - A. M. Kagan
AU  - C. R. Rao
TI  - On estimation of a location parameter in presence of an ancillary component
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2005
SP  - 172
EP  - 176
VL  - 50
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_2005_50_1_a11/
LA  - en
ID  - TVP_2005_50_1_a11
ER  - 
%0 Journal Article
%A A. M. Kagan
%A C. R. Rao
%T On estimation of a location parameter in presence of an ancillary component
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2005
%P 172-176
%V 50
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_2005_50_1_a11/
%G en
%F TVP_2005_50_1_a11
A. M. Kagan; C. R. Rao. On estimation of a location parameter in presence of an ancillary component. Teoriâ veroâtnostej i ee primeneniâ, Tome 50 (2005) no. 1, pp. 172-176. http://geodesic.mathdoc.fr/item/TVP_2005_50_1_a11/