On estimation of a location parameter in presence of an ancillary component
Teoriâ veroâtnostej i ee primeneniâ, Tome 50 (2005) no. 1, pp. 172-176
Voir la notice de l'article provenant de la source Math-Net.Ru
If $(X, Y)$ is an observation with distribution function $F(x-\theta,y)$, $\sigma^{2}=\textrm{var}(X)$, $\rho=\textrm{corr}(X,Y)$ and $I$ is the Fisher information on $\theta$ in $(X,Y)$, then $I\ge\{\sigma^2(1-\rho^2)\}^{-1}$. The equality sign holds under conditions closely related to the conditions for linearity of the Pitman estimator of $\theta$ from a sample from $F(x-\theta,y)$. The results are extensions of earlier results for the case when only the informative component $X$ is observed.
Keywords:
Fisher information, Pitman estimator.
@article{TVP_2005_50_1_a11,
author = {A. M. Kagan and C. R. Rao},
title = {On estimation of a location parameter in presence of an ancillary component},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {172--176},
publisher = {mathdoc},
volume = {50},
number = {1},
year = {2005},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TVP_2005_50_1_a11/}
}
TY - JOUR AU - A. M. Kagan AU - C. R. Rao TI - On estimation of a location parameter in presence of an ancillary component JO - Teoriâ veroâtnostej i ee primeneniâ PY - 2005 SP - 172 EP - 176 VL - 50 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_2005_50_1_a11/ LA - en ID - TVP_2005_50_1_a11 ER -
A. M. Kagan; C. R. Rao. On estimation of a location parameter in presence of an ancillary component. Teoriâ veroâtnostej i ee primeneniâ, Tome 50 (2005) no. 1, pp. 172-176. http://geodesic.mathdoc.fr/item/TVP_2005_50_1_a11/