On estimation of a location parameter in presence of an ancillary component
Teoriâ veroâtnostej i ee primeneniâ, Tome 50 (2005) no. 1, pp. 172-176
Cet article a éte moissonné depuis la source Math-Net.Ru
If $(X, Y)$ is an observation with distribution function $F(x-\theta,y)$, $\sigma^{2}=\textrm{var}(X)$, $\rho=\textrm{corr}(X,Y)$ and $I$ is the Fisher information on $\theta$ in $(X,Y)$, then $I\ge\{\sigma^2(1-\rho^2)\}^{-1}$. The equality sign holds under conditions closely related to the conditions for linearity of the Pitman estimator of $\theta$ from a sample from $F(x-\theta,y)$. The results are extensions of earlier results for the case when only the informative component $X$ is observed.
Keywords:
Fisher information, Pitman estimator.
@article{TVP_2005_50_1_a11,
author = {A. M. Kagan and C. R. Rao},
title = {On estimation of a location parameter in presence of an ancillary component},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {172--176},
year = {2005},
volume = {50},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TVP_2005_50_1_a11/}
}
A. M. Kagan; C. R. Rao. On estimation of a location parameter in presence of an ancillary component. Teoriâ veroâtnostej i ee primeneniâ, Tome 50 (2005) no. 1, pp. 172-176. http://geodesic.mathdoc.fr/item/TVP_2005_50_1_a11/
[1] Khyuber P., Robastnost v statistike, Mir, M., 1984, 512 pp. | MR
[2] Kagan A. M., Linnik Yu. V., Rao C. R., “On a characterization of the normal law based on a property of the sample average”, Sankhyā, A27 (1965), 405–406 | MR
[3] Kagan A. M., Linnik Yu. V., Pao S. R., Kharakterizatsionnye zadachi matematicheskoi statistiki, Nauka, M., 1972, 656 pp. | MR
[4] Lukach E., Kharakteristicheskie funktsii, Nauka, M., 1979, 423 pp. | MR
[5] Rao C. R., “Minimum variance estimation in distributions admitting ancillary statistics”, Sankhyā, A12 (1952), 53–56 | MR