Mots-clés : maximal sequence, Choquet representation
@article{TVP_2005_50_1_a10,
author = {U. R\"osler and G. Alsmeyer},
title = {Maximal $l\phi$-inequalities for nonnegative submartingales},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {162--172},
year = {2005},
volume = {50},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TVP_2005_50_1_a10/}
}
U. Rösler; G. Alsmeyer. Maximal $l\phi$-inequalities for nonnegative submartingales. Teoriâ veroâtnostej i ee primeneniâ, Tome 50 (2005) no. 1, pp. 162-172. http://geodesic.mathdoc.fr/item/TVP_2005_50_1_a10/
[1] Alsmeyer G., Rösler U., “The best constant in the Topchii–Vatutin inequality for martingales”, Statist. Probab. Lett., 65:3 (2003), 199–206 | DOI | MR | Zbl
[2] Bingham N. H., Goldie C. M., Teugels J. L., Regular Variation, Cambridge Univ. Press, Cambridge, 1987, 491 pp. | MR | Zbl
[3] Burkholder D. L., “Explorations in martingale theory and its applications”, Lecture Notes in Math., 1464, 1991, 1–66 | MR | Zbl
[4] Chow Y. S., Teicher H., Probability Theory: Independence, Interchangeability, Martingales, Springer-Verlag, New York, 1997, 488 pp. | MR
[5] Dellacherie C., Meyer P. A., Probabilities and Potential. B. Theory of Martingales, North-Holland, Amsterdam, 1982, 463 pp. | MR | Zbl
[6] Gundy R. F., “On the class $L\log L$, martingales, and singular integrals”, Studia Math., 33 (1969), 109–118 | MR | Zbl
[7] Long R., Martingale Spaces and Inequalities, Peking Univ. Press, Beijing; Vieweg, Braunschweig, 1993, 346 pp. | MR | Zbl
[8] Neveu J., Discrete-Parameter Martingales, North-Holland, Amsterdam, 1975, 236 pp. | MR | Zbl