Keywords: large deviationsю.
@article{TVP_2004_49_4_a9,
author = {V. M. Kruglov},
title = {On inequalities for large deviations in the {Bernoulli} scheme},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {785--790},
year = {2004},
volume = {49},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2004_49_4_a9/}
}
V. M. Kruglov. On inequalities for large deviations in the Bernoulli scheme. Teoriâ veroâtnostej i ee primeneniâ, Tome 49 (2004) no. 4, pp. 785-790. http://geodesic.mathdoc.fr/item/TVP_2004_49_4_a9/
[1] Uspensky J. V., Introduction to Mathematical Probability, McGraw-Hill, New York, London, 1937, 411 pp. | Zbl
[2] Chernoff H., “A measure of asymptotic efficiency for tests of a hypothesis based on the sum of observations”, Ann. Math. Statist., 23 (1952), 493–507 | DOI | MR | Zbl
[3] Okamoto M., “Some inequalities relating to the partial sum of binomial probabilities”, Ann. Inst. Statist. Math., 10 (1958), 29–35 | DOI | MR | Zbl
[4] Kolmogorov A. N., “Nekotorye neravenstva, svyazannye s usilennym zakonom bolshikh chisel”, Teoriya veroyatn. i ee primen., 48:2 (2003), 249–253 | MR | Zbl
[5] Borovkov A. A., Teoriya veroyatnostei, Nauka, M., 1986, 431 pp. | MR | Zbl
[6] Shiryaev A. N., Veroyatnost, Nauka, M., 1989, 640 pp. | MR
[7] Laha R. G., Rohatgi V. K., Probability Theory, Wiley, New York, 1979, 557 pp. | MR | Zbl