A renewal equation in a multidimensional space
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 49 (2004) no. 4, pp. 779-785
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The following renewal equation in a multidimensional space (REMS)
is considered
$$
f(x)=g(x)+\int_{R^n}K(x-t)\,f(t)\,dt,
$$
where $K$ is the density of a distribution in $R^n$. Assuming
that $g\in L_1(R^n)$ and that the nonzero vector of the first
moment of  $K$ is finite we prove the existence and uniqueness of a
solution of an REMS within a certain class of functions. The renewal
density for the solution of this equation is constructed and its
properties are investigated. We give a probabilistic
interpretation for our results by means of an example from the
theory of random walks in $R^n$.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
renewal, multidimensional space, solvability
Mots-clés : joint motion.
                    
                  
                
                
                Mots-clés : joint motion.
@article{TVP_2004_49_4_a8,
     author = {N. B. Engibaryan},
     title = {A renewal equation in a multidimensional space},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {779--785},
     publisher = {mathdoc},
     volume = {49},
     number = {4},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2004_49_4_a8/}
}
                      
                      
                    N. B. Engibaryan. A renewal equation in a multidimensional space. Teoriâ veroâtnostej i ee primeneniâ, Tome 49 (2004) no. 4, pp. 779-785. http://geodesic.mathdoc.fr/item/TVP_2004_49_4_a8/
