A renewal equation in a multidimensional space
Teoriâ veroâtnostej i ee primeneniâ, Tome 49 (2004) no. 4, pp. 779-785 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The following renewal equation in a multidimensional space (REMS) is considered $$ f(x)=g(x)+\int_{R^n}K(x-t)\,f(t)\,dt, $$ where $K$ is the density of a distribution in $R^n$. Assuming that $g\in L_1(R^n)$ and that the nonzero vector of the first moment of $K$ is finite we prove the existence and uniqueness of a solution of an REMS within a certain class of functions. The renewal density for the solution of this equation is constructed and its properties are investigated. We give a probabilistic interpretation for our results by means of an example from the theory of random walks in $R^n$.
Keywords: renewal, multidimensional space, solvability
Mots-clés : joint motion.
@article{TVP_2004_49_4_a8,
     author = {N. B. Engibaryan},
     title = {A renewal equation in a multidimensional space},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {779--785},
     year = {2004},
     volume = {49},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2004_49_4_a8/}
}
TY  - JOUR
AU  - N. B. Engibaryan
TI  - A renewal equation in a multidimensional space
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2004
SP  - 779
EP  - 785
VL  - 49
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TVP_2004_49_4_a8/
LA  - ru
ID  - TVP_2004_49_4_a8
ER  - 
%0 Journal Article
%A N. B. Engibaryan
%T A renewal equation in a multidimensional space
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2004
%P 779-785
%V 49
%N 4
%U http://geodesic.mathdoc.fr/item/TVP_2004_49_4_a8/
%G ru
%F TVP_2004_49_4_a8
N. B. Engibaryan. A renewal equation in a multidimensional space. Teoriâ veroâtnostej i ee primeneniâ, Tome 49 (2004) no. 4, pp. 779-785. http://geodesic.mathdoc.fr/item/TVP_2004_49_4_a8/

[1] Feller V., Vvedenie v teoriyu veroyatnostei i ee prilozheniya, v. 2, Mir, M., 1984, 752 pp. | MR | Zbl

[2] Koks D., Smit V., Teoriya vosstanovleniya, Sovetskoe radio, M., 1967, 299 pp. | MR

[3] Sevastyanov B. A., “Teoriya vosstanovleniya”, Itogi nauki i tekhniki, ser. teoriya veroyatn., matem. statist., teoret. kibernet., 11, 1974, 99–128 | MR | Zbl

[4] Rudin U., Funktsionalnyi analiz, Mir, M., 1975, 443 pp. | MR

[5] Yengibarian N. B., “Renewal equation on the whole line”, Stochastic Process. Appl., 85:2 (2000), 237–247 | DOI | MR | Zbl

[6] Presdorf Z., Nekotorye klassy singulyarnykh uravnenii, Mir, M., 1979, 493 pp. | MR

[7] Kolmogorov A. N., Fomin S. V., Elementy teorii funktsii i funktsionalnogo analiza, Nauka, M., 1981, 543 pp. | MR

[8] Engibaryan N. B., Arabadzhyan L. G., “O faktorizatsii kratnykh integralnykh operatorov Vinera–Khopfa”, Dokl. AN SSSR, 291:1 (1986), 11–14 | MR | Zbl

[9] Arabadzhyan L. G., Engibaryan N. B., “Uravneniya v svertkakh i nelineinye funktsionalnye uravneniya”, Itogi nauki i tekhniki, ser. matem. analiz, 22, 1984, 175–244 | MR | Zbl

[10] Engibaryan N. B., “Uravneniya vosstanovleniya na poluosi”, Izv. RAN, 63:1 (1999), 61–76 | MR | Zbl