On sharp large deviations for sums of random vectors and multidimensional Laplace approximation
Teoriâ veroâtnostej i ee primeneniâ, Tome 49 (2004) no. 4, pp. 743-774 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $X, X_i,i\geq 1$, be a sequence of independent and identically distributed random vectors in $R^d$. Consider the partial sum $S_n:=X_1+\cdots +X_n$. Under some regularity conditions on the distribution of $X$, we obtain an asymptotic formula for $P\{S_n\in nA\}$, where $A$ is an arbitrary Borel set. Several corollaries follow, one of which asserts that, under the same regularity conditions, for any Borel set $A$, $\lim_{n\to\infty}n^{-1}\log P\{S_n\in nA\} =-I(A)$, where $I$ is a large deviation functional. We also prove a multidimensional Laplace-type approximation that allows an explicit calculation of the sharp large deviation probability typically when the set $A$ has a smooth boundary.
Keywords: large deviations, exponential family, differential geometry of surfaces, asymptotic analysis, Laplace method
Mots-clés : Fourier transform.
@article{TVP_2004_49_4_a6,
     author = {Ph. Barbe and M. Broniatowski},
     title = {On sharp large deviations for sums of random vectors and multidimensional {Laplace} approximation},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {743--774},
     year = {2004},
     volume = {49},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TVP_2004_49_4_a6/}
}
TY  - JOUR
AU  - Ph. Barbe
AU  - M. Broniatowski
TI  - On sharp large deviations for sums of random vectors and multidimensional Laplace approximation
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2004
SP  - 743
EP  - 774
VL  - 49
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TVP_2004_49_4_a6/
LA  - en
ID  - TVP_2004_49_4_a6
ER  - 
%0 Journal Article
%A Ph. Barbe
%A M. Broniatowski
%T On sharp large deviations for sums of random vectors and multidimensional Laplace approximation
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2004
%P 743-774
%V 49
%N 4
%U http://geodesic.mathdoc.fr/item/TVP_2004_49_4_a6/
%G en
%F TVP_2004_49_4_a6
Ph. Barbe; M. Broniatowski. On sharp large deviations for sums of random vectors and multidimensional Laplace approximation. Teoriâ veroâtnostej i ee primeneniâ, Tome 49 (2004) no. 4, pp. 743-774. http://geodesic.mathdoc.fr/item/TVP_2004_49_4_a6/

[1] Andriani C., Baldi P., “Sharp estimates of deviations of the sample mean in many dimensions”, Ann. Inst. H. Poincaré Probab. Statist., 33:3 (1997), 371–385 | DOI | MR | Zbl

[2] Azencott R., Grandes déviations et applications, Lecture Notes in Math., 774, 1980, 176 pp. | MR

[3] Bahadur R. R., Ranga Rao R., “On deviations of the sample mean”, Ann. Math. Statist., 31 (1960), 1015–1027 | DOI | MR | Zbl

[4] Bahadur R. R., Zabell S. L., “Large deviations of the sample mean in general vector spaces”, Ann. Probab., 7:4 (1979), 587–621 | DOI | MR | Zbl

[5] Balkema A. A., Geluk J. L., de Haan L., “An extension of Karamata's Tauberian theorem and its connection with complementary convex functions”, Quart. J. Math. Oxford, 30:120 (1979), 385–416 | DOI | MR | Zbl

[6] Barndorff-Nielsen O., Information and Exponential Families in Statistical Theory, Wiley, Chichester, 1978, 238 pp. | MR

[7] Bingham N. H., Goldie C. M., Teugels J. L., Regular Variation, Cambridge University Press, Cambridge, 1989, 494 pp. | MR | Zbl

[8] Bleistein N., Handelsman R. A., Asymptotic Expansions of Integrals, Holt, Rinehart and Winston, New York, 1975, 425 pp. | MR | Zbl

[9] Bolthausen E., “Laplace approximations for sums of independent random vectors”, Probab. Theory Related Fields, 72:2 (1986), 305–318 | DOI | MR | Zbl

[10] Bolthausen E., “Laplace approximations for sums of independent random vectors. II. Degenerate maxima and manifold of maxima”, Probab. Theory Related Fields, 76:2 (1987), 167–206 | DOI | MR | Zbl

[11] Borovkov A. A., Mogulskii A. A., “Large deviations and testing statistical hypothesis. I. Large deviations of sums of random vectors”, Sib. Adv. Math., 2:3 (1992), 53–120 | MR

[12] Borovkov A. A., Mogulskii A. A., “Large deviations and testing satistical hypothesis. II. Large deviations of the maximum points of random fields”, Sib. Adv. Math., 2:4 (1992), 43–72 | MR | Zbl

[13] Borovkov A. A., Mogulskii A. A., “Large deviations and testing satistical hypothesis. III. The statistical invariance principle and the laws of conservation”, Sib. Adv. Math., 3:2 (1993), 14–80 | MR

[14] Borovkov A. A., Mogulskii A. A., “Integro-lokalnye predelnye teoremy dlya summ sluchainykh vektorov, vklyuchayuschie bolshie ukloneniya. I, II”, Teoriya veroyatn. i ee primen., 43:1 (1998), 3–17 ; 45:1 (2000), 5–29 | MR | Zbl | MR | Zbl

[15] Borovkov A. A., Rogozin B. A., “O tsentralnoi predelnoi teoreme v mnogomernom sluchae”, Teoriya veroyatn. i ee primen., 10:1 (1965), 61–69 | MR | Zbl

[16] Breitung K., Hohenbichler M., “Asymptotic approximations for multivariate integrals with an application to multinormal probabilities”, J. Multivariate Anal., 30:1 (1989), 80–97 | DOI | MR | Zbl

[17] Brown L. D., Fundamentals of Statistical Exponential Families with Applications in Statistical Decision Theory, Institute of Mathematical Statistics, Hayward, CA, 1986, 283 pp. | MR

[18] De Bruijn N. G., “Pairs of slowly oscillating functions occuring in asymptotic problems concerning the Laplace transform”, Nieuw Arch. Wisk., 7 (1959), 20–26 | MR | Zbl

[19] Bucklew J. A., Large Deviation Techniques in Decision, Simulation, and Estimation, Wiley, New York, 1990, 270 pp. | MR

[20] Chaganty N. R., Sethuraman J., “Multidimensional large deviation local limit theorems”, J. Multivariate Anal., 20:2 (1986), 190–204 | DOI | MR | Zbl

[21] Chavel I., Riemannian Geometry: A Modern Introduction, Cambridge Univ. Press, Cambridge, 1993, 386 pp. | MR | Zbl

[22] Dembo A., Zeitouni O., Large Deviations Techniques and Applications, Jones and Bartlett, Boston, MA, 1993, 346 pp. | MR | Zbl

[23] Deuschel J.-D., Stroock D., Large Deviations, Academic Press, Boston, MA, 1989, 307 pp. | MR | Zbl

[24] do Carmo M. P., Differential Geometry of Curves and Surfaces, Prentice Hall, Englewood Cliffs, NJ, 1976, 503 pp. | MR | Zbl

[25] do Carmo M. P., Riemannian Geometry, Bikhäuser, Boston, MA, 1992, 300 pp. | MR

[26] Donsker M., Varadhan S. R. S., “Asymptotic evaluation of certain Markov process expectations for large time. III”, Comm. Pure Appl. Math., 29:4 (1976), 389–461 | DOI | MR | Zbl

[27] Ellis R. S., Entropy, Large Deviations, and Statistical Mechanics, Springer-Verlag, New York, 1985, 364 pp. | MR

[28] Feller W., Vvedenie v teoriyu veroyatnostei i ee prilozheniya, v. 2, Mir, M., 1984, 752 pp. | MR

[29] Gallot S., Hulin D., Lafontaine J., Riemannian Geometry, Springer-Verlag, Berlin, 1993

[30] Hwang C.-R., “Laplace's method revisited: weak convergence of probability measures”, Ann. Probab., 8:6 (1980), 1177–1182 | DOI | MR | Zbl

[31] Iltis M., “Sharp asymptotics of large deviations in $\mathbb R^d$”, J. Theoret. Probab., 8:3 (1995), 501–522 | DOI | MR | Zbl

[32] Jensen J. L., Saddlepoint Approximations, Clarendon Press, New York; Oxford Univ. Press, 1995, 332 pp. | MR

[33] Letac G., Lectures on Natural Exponential Families and their Variance Functions, Instituto de Matemática Pura e Aplicada (IMPA), Rio de Janeiro, 1992, 128 pp. | MR | Zbl

[34] Nagaev A. V., “Lower bounds for large deviations in $\mathbb R^d$, $d>1$”, Math. Nachr., 154 (1991), 41–49 | DOI | MR | Zbl

[35] Ney P., “Dominating points and the asymptotics of large deviations for random walk on $\mathbb R^d$”, Ann. Probab., 11:1 (1983), 158–167 | DOI | MR | Zbl

[36] Petrov V. V., “O veroyatnostyakh bolshikh uklonenii summ nezavisimykh sluchainykh velichin”, Teoriya veroyatn. i ee primen., 10:2 (1965), 310–322 | MR | Zbl

[37] Petrov V. V., Shirokova I. V., “Eksponentsialnaya skorost skhodimosti v zakone bolshikh chisel”, Vestnik Leningradskogo un-ta, ser. matem., mekh., astronom., 1973, no. 2, 155–157 | Zbl

[38] Rikhter V., “Lokalnye predelnye teoremy dlya bolshikh uklonenii”, Teoriya veroyatn. i ee primen., 2:2 (1957), 214–229

[39] Rikhter V., “Mnogomernye lokalnye predelnye teoremy dlya bolshikh uklonenii”, Teoriya veroyatn. i ee primen., 3:1 (1958), 107–114

[40] Ruben H., “An asymptotic expansion for the multivariate normal distribution and Mills' ratio”, J. Res. Nat. Bur. Standards Sect. B, 68 (1964), 3–11 | MR | Zbl

[41] Slaby M., “On the upper bound for large deviations of sums of i.i.d. random vectors”, Ann. Probab., 16:3 (1988), 978–990 | DOI | MR | Zbl

[42] Spivak M., A Comprehensive Introduction to Differential Geometry, v. 1–5, Publish or Perish, Boston, 1979, 668 pp. ; 423 pp.; 466 pp.; 561 pp.; 661 pp. | MR

[43] Stroock D., An Introduction to the Theory of Large Deviations, Springer-Verlag, New York, 1984, 196 pp. | MR | Zbl

[44] Vinogradov V., Refined Large Deviation Limit Theorems, Longman, Harlow, 1995, 212 pp. | MR

[45] Wagner E., “Ein reeller Tauberscher Satz für die Laplace-Transformation”, Math. Nachr., 36 (1968), 323–331 | DOI | MR | Zbl

[46] Weyl H., “On the volume of tubes”, Amer. J. Math., 61 (1939), 461–472 | DOI | MR