On sharp large deviations for sums of random vectors and multidimensional Laplace approximation
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 49 (2004) no. 4, pp. 743-774
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Let $X, X_i,i\geq 1$, be a sequence of independent
and identically distributed random vectors in $R^d$. Consider the partial
sum $S_n:=X_1+\cdots +X_n$. Under some regularity conditions on
the distribution of $X$, we obtain an asymptotic formula for
$P\{S_n\in nA\}$, where $A$ is an arbitrary Borel set. Several corollaries
follow, one of which asserts that, under the same regularity
conditions, for any Borel set $A$, $\lim_{n\to\infty}n^{-1}\log P\{S_n\in nA\}
=-I(A)$, where $I$ is a large deviation functional. We also prove a
multidimensional Laplace-type approximation that allows an explicit
calculation of the sharp large deviation probability typically when the set $A$
has a smooth boundary.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
large deviations, exponential family, differential geometry of surfaces, asymptotic analysis, Laplace method
Mots-clés : Fourier transform.
                    
                  
                
                
                Mots-clés : Fourier transform.
@article{TVP_2004_49_4_a6,
     author = {Ph. Barbe and M. Broniatowski},
     title = {On sharp large deviations for sums of random vectors and multidimensional {Laplace} approximation},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {743--774},
     publisher = {mathdoc},
     volume = {49},
     number = {4},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TVP_2004_49_4_a6/}
}
                      
                      
                    TY - JOUR AU - Ph. Barbe AU - M. Broniatowski TI - On sharp large deviations for sums of random vectors and multidimensional Laplace approximation JO - Teoriâ veroâtnostej i ee primeneniâ PY - 2004 SP - 743 EP - 774 VL - 49 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_2004_49_4_a6/ LA - en ID - TVP_2004_49_4_a6 ER -
%0 Journal Article %A Ph. Barbe %A M. Broniatowski %T On sharp large deviations for sums of random vectors and multidimensional Laplace approximation %J Teoriâ veroâtnostej i ee primeneniâ %D 2004 %P 743-774 %V 49 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/TVP_2004_49_4_a6/ %G en %F TVP_2004_49_4_a6
Ph. Barbe; M. Broniatowski. On sharp large deviations for sums of random vectors and multidimensional Laplace approximation. Teoriâ veroâtnostej i ee primeneniâ, Tome 49 (2004) no. 4, pp. 743-774. http://geodesic.mathdoc.fr/item/TVP_2004_49_4_a6/
