Limit theorems for allocation of particles over different cells with restrictions
Teoriâ veroâtnostej i ee primeneniâ, Tome 49 (2004) no. 4, pp. 712-725 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Equiprobable allocation schemes of $n$ indistinguishable or distinguishable particles over $N$ distinguishable cells are considered provided the fillings of the cells take on values in a fixed subset $A$ of the set of nonnegative integers. Local normal and Poisson theorems are proved for the distributions of the number of cells, each of which contains exactly $r$ particles, and for the number of cycles of length $r\in A$ in a permutation selected at random and equiprobable from the set of all permutations of order $n$ with $N$ cycles $(N\le n)$ whose lengths are elements of a set $A\subsetN$. It is assumed that $n,N\to\infty$ in the central domain.
Keywords: random allocations, asymptotic expansions, saddle-point method, local normal theorem.
@article{TVP_2004_49_4_a4,
     author = {A. N. Timashev},
     title = {Limit theorems for allocation of particles over different cells with restrictions},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {712--725},
     year = {2004},
     volume = {49},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2004_49_4_a4/}
}
TY  - JOUR
AU  - A. N. Timashev
TI  - Limit theorems for allocation of particles over different cells with restrictions
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2004
SP  - 712
EP  - 725
VL  - 49
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TVP_2004_49_4_a4/
LA  - ru
ID  - TVP_2004_49_4_a4
ER  - 
%0 Journal Article
%A A. N. Timashev
%T Limit theorems for allocation of particles over different cells with restrictions
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2004
%P 712-725
%V 49
%N 4
%U http://geodesic.mathdoc.fr/item/TVP_2004_49_4_a4/
%G ru
%F TVP_2004_49_4_a4
A. N. Timashev. Limit theorems for allocation of particles over different cells with restrictions. Teoriâ veroâtnostej i ee primeneniâ, Tome 49 (2004) no. 4, pp. 712-725. http://geodesic.mathdoc.fr/item/TVP_2004_49_4_a4/

[1] Kolchin V. F., Sevastyanov B. A., Chistyakov V. P., Sluchainye razmescheniya, Nauka, M., 1976, 224 pp. | MR

[2] Holst L., “On numbers related to partitions of unlike objects and occupancy problems”, European J. Combin., 2:3 (1981), 231–237 | MR | Zbl

[3] Fedoryuk M. V., Metod perevala, Nauka, M., 1977, 368 pp. | MR

[4] Sachkov V. N., Kombinatornye metody diskretnoi matematiki, Nauka, M., 1977, 320 pp.

[5] Riordan Dzh., Vvedenie v kombinatornyi analiz, IL, M., 1963, 287 pp.

[6] Feller V., Vvedenie v teoriyu veroyatnostei i ee prilozheniya, v. 1, Mir, M., 1967, 498 pp. | MR | Zbl

[7] Trunov A. N., “Predelnye teoremy v zadache o razmeschenii odinakovykh chastits po razlichnym yacheikam”, Trudy matem. in-ta im. V. A. Steklova, 177, 1986, 147–164 | MR | Zbl

[8] Sachkov V. N., Veroyatnostnye metody v kombinatornom analize, Nauka, M., 1978, 287 pp. | MR | Zbl

[9] Olver F., Vvedenie v asimptoticheskie metody i spetsialnye funktsii, Nauka, M., 1978, 375 pp. | MR