Logarithmic $L_2$-small ball asymptotics for some fractional Gaussian processes
Teoriâ veroâtnostej i ee primeneniâ, Tome 49 (2004) no. 4, pp. 695-711 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We find the logarithmic $L_2$-small ball asymptotics of some Gaussian processes related to the fractional Brownian motion (fBm), fractional Ornstein–Uhlenbeck process (fOU), and their integrated analogues. We consider also the multiparameter generalizations.
Keywords: fractional Brownian motion, fractional Ornstein–Uhlenbeck process, Lévy's Brownian motion, small deviations, spectral asymptotics.
@article{TVP_2004_49_4_a3,
     author = {A. I. Nazarov and Ya. Yu. Nikitin},
     title = {Logarithmic $L_2$-small ball asymptotics for some fractional {Gaussian} processes},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {695--711},
     year = {2004},
     volume = {49},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2004_49_4_a3/}
}
TY  - JOUR
AU  - A. I. Nazarov
AU  - Ya. Yu. Nikitin
TI  - Logarithmic $L_2$-small ball asymptotics for some fractional Gaussian processes
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2004
SP  - 695
EP  - 711
VL  - 49
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TVP_2004_49_4_a3/
LA  - ru
ID  - TVP_2004_49_4_a3
ER  - 
%0 Journal Article
%A A. I. Nazarov
%A Ya. Yu. Nikitin
%T Logarithmic $L_2$-small ball asymptotics for some fractional Gaussian processes
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2004
%P 695-711
%V 49
%N 4
%U http://geodesic.mathdoc.fr/item/TVP_2004_49_4_a3/
%G ru
%F TVP_2004_49_4_a3
A. I. Nazarov; Ya. Yu. Nikitin. Logarithmic $L_2$-small ball asymptotics for some fractional Gaussian processes. Teoriâ veroâtnostej i ee primeneniâ, Tome 49 (2004) no. 4, pp. 695-711. http://geodesic.mathdoc.fr/item/TVP_2004_49_4_a3/

[1] Lifshits M. A., “Asymptotic behavior of small ball probabilities”, Probability Theory and Mathematical Statistics, Proceedings of the 7th international Vilnius conference, eds. B. Grigelionis et al., VSP, Utrecht; TEV, Vilnius, 1999, 453–468

[2] Li W. V., Shao Q.-M., “Gaussian processes: Inequalities, small ball probabilities and applications”, Stochastic Processes: Theory and Methods, Handbook of Statistics, 19, eds. C. R. Rao and D. Shanbhag, North-Holland, Amsterdam, 2001, 533–597 | MR | Zbl

[3] Sytaya G. N., “O nekotorykh asimptoticheskikh predstavleniyakh gaussovskoi mery v gilbertovom prostranstve”, Teoriya sluchainykh protsessov, 1974, no. 2, 93–104

[4] Hoffmann-Jørgensen J., Shepp L. A., Dudley R. M., “On the lower tail of Gaussian seminorms”, Ann. Probab., 7:2 (1979), 319–342 | DOI | MR | Zbl

[5] Ibragimov I. A., “O veroyatnosti popadaniya gaussova vektora so znacheniyami v gilbertovom prostranstve v sferu malogo radiusa”, Zapiski nauchn. semin. LOMI, 85, 1979, 75–93 | MR | Zbl

[6] Zolotarev V. M., “Gaussian measure asymptotic in $l_2$ on a set of centered spheres with radii tending to zero”, 12th European Meeting of Statisticians (Varna), 1979, 254

[7] Zolotarev V. M., “Asimptoticheskoe povedenie gaussovskoi mery v $l_2$”, Problemy ustoichivosti stokhasticheskikh modelei, Tr. seminara, eds. V. M. Zolotareva i V. V. Kalashnikova, VNIISI, M., 1984, 54–58 | MR

[8] Csáki E., “On small values of the square integral of a multiparameter Wiener process”, Statistics and Probability, Proceedings of the Third Pannonian Symposium on Mathematical Statistics (Visegrád, 1982), Reidel, Boston, 1984, 19–26 | MR

[9] Dunker T., Lifshits M. A., Linde W., “Small deviations of sums of independent variables”, Progr. Probab., 43 (1998), 59–74 | MR | Zbl

[10] Li W. V., “Comparison results for the lower tail of Gaussian seminorms”, J. Theoret. Probab., 5:1 (1992), 1–31 | DOI | MR

[11] Nazarov A. I., Nikitin Ya. Yu., “Exact small ball behavior of integrated Gaussian processes under $L_2$-norm and spectral asymptotics of boundary value problems”, Probab. Theory Related Fields, 129:4 (2004), 469–494 | DOI | MR | Zbl

[12] Nazarov A. I., “O tochnoi konstante v asimptotike malykh uklonenii v $L_2$-norme nekotorykh gaussovskikh protsessov”, Nelineinye uravneniya i matematicheskii analiz, Probl. matem. anal., 26, T. Rozhkovskaya, Novosibirsk, 2003, 179–214

[13] Gao F., Hannig J., Lee T.-Y., Torcaso F., “Exact $L^2$ small balls of Gaussian processes”, J. Theoret. Probab., 17:2 (2004), 503–520 | DOI | MR | Zbl

[14] Gao F., Hannig J., Lee T.-Y., Torcaso F., “Laplace transforms via Hadamard factorization with applications to small ball probabilities”, Electron J. Probab., 8:13 (2003), 1–20 | MR

[15] Embrechts P., Maejima M., Selfsimilar Processes, Princeton Univ. Press, Princeton, 2002, 111 pp. | MR | Zbl

[16] Li W. V., Linde W., “Existence of small ball constants for fractional Brownian motions”, C. R. Acad. Sci. Paris, 326:11 (1998), 1329–1334 | MR | Zbl

[17] Li W. V., Linde W., “Approximation, metric entropy and small ball estimates for Gaussian measures”, Ann. Probab., 27:3 (1999), 1556–1578 | DOI | MR | Zbl

[18] Lifshits M. A., Linde W., “Small deviations of weighted fractional processes and average nonlinear approximation”, Trans. Amer. Math. Soc., 2004 (to appear)

[19] Lifshits M. A., Linde W., “Approximation and entropy numbers of Volterra operators with application to Brownian motion”, Mem. Amer. Math. Soc., 157, no. 745, 2002, 1–87 | MR

[20] Bronski J. C., “Small ball constants and tight eigenvalue asymptotics for fractional Brownian motions”, J. Theoret. Probab., 16:1 (2003), 87–100 | DOI | MR | Zbl

[21] Birman M. Sh., Solomyak M. Z., “Asimptotika spektra slabo polyarnykh integralnykh operatorov”, Izv. AN SSSR, 34:5 (1970), 1142–1158 | MR | Zbl

[22] Fatalov V. R., “Konstanty v asimptotikakh veroyatnostei malykh uklonenii dlya gaussovskikh protsessov i polei”, Uspekhi matem. nauk, 58:4 (2003), 89–134 | MR | Zbl

[23] Luschgy H., Pagès G., “Sharp asymptotics of the functional quantization problem for Gaussian processes”, Ann. Probab., 32:2 (2004), 1574–1599 | DOI | MR | Zbl

[24] Luschgy H., Pagès G., “Functional quantization of Gaussian processes”, J. Funct. Anal., 196:2 (2002), 486–531 | DOI | MR | Zbl

[25] Birman M. Sh., Solomyak M. Z., “Kolichestvennyi analiz v teoremakh vlozheniya Soboleva i prilozheniya k spektralnoi teorii”, Trudy X Matematicheskoi shkoly, eds. Yu. A. Mitropolskii i A. F. Shestopal, Kiev, 1974, 5–189 | MR

[26] Weyl H., “Das asymptotische Verteilungsgesetz der Eigenwerte linearer partieller Differentialgleichungen”, Math. Ann., 71 (1912), 441–479 | DOI | MR | Zbl

[27] Gradshtein I. S., Ryzhik I. M., Tablitsy integralov, summ, ryadov i proizvedenii, Nauka, M., 1971, 1108 pp.

[28] Li W. V., “Small ball probabilities for Gaussian Markov processes under the $L_p$-norm”, Stochastic Process. Appl., 92:1 (2001), 87–102 | DOI | MR | Zbl

[29] Deheuvels P., Martynov G., “Karhunen–Loève expansions for weighted Wiener processes and Brownian bridges via Bessel functions”, Progr. Probab., 55 (2003), 57–93 | MR | Zbl

[30] Cheridito P., “Mixed fractional Brownian motion”, Bernoulli, 7:6 (2001), 913–934 | DOI | MR | Zbl

[31] Rosenblatt M., “Some results on the asymptotic behavior of eigenvalues for a class of integral equations with translation kernel”, J. Math. Mech., 12 (1963), 619–628 | MR | Zbl

[32] Lamperti J. W., “Semi-stable stochastic processes”, Trans. Amer. Math. Soc., 104 (1962), 62–78 | DOI | MR | Zbl

[33] Barndorff-Nielsen O. E., Pérez-Abreu V., “Stationary and self-similar processes driven by Lévy processes”, Stochastic Process. Appl., 84:2 (1999), 357–369 | DOI | MR | Zbl

[34] Cheridito P., Kawaguchi H., Maejima M., “Fractional Ornstein–Uhlenbeck processes”, Electron J. Probab., 8:3 (2003), 1–14 | MR

[35] Flandrin P., Borgnat P., Amblard P.-O., “From stationarity to self-similarity, and back: variations on the Lamperti transformation”, Lecture Notes in Phys., 621, 2003, 88–117

[36] Kleptsyna M. L., Le Breton A., “Statistical Analysis of the fractional Ornstein–Uhlenbeck type process”, Statist. Inference Stoch. Process., 5:3 (2002), 229–248 | DOI | MR | Zbl

[37] Yaglom A. M., Korrelyatsionnaya teoriya statsionarnykh sluchainykh funktsii, Gidrometeoizdat, L., 1981, 280 pp.

[38] Karol' A. I., Nazarov A. I., Nikitin Ya. Yu., Tensor products of compact operators and logarithmic $L_2$-small ball asymptotics for Gaussian random fields, Studi Statistici No 74, Istituto di Metodi Quantitativi, Università L. Bocconi, Milano, 2003, 30 pp.

[39] Li W. V., “A Gaussian correlation inequality and its applications to small ball probabilities”, Electron. Comm. Probab., 4 (1999), 111–118 | MR | Zbl

[40] Lifshits M. A., Simon Th., Small deviations for fractional stable processes, Preprint No 177, Université d'Évry, 2003, arXiv: math.PR/0305092 | MR