On large deviations, II
Teoriâ veroâtnostej i ee primeneniâ, Tome 49 (2004) no. 4, pp. 672-694
Cet article a éte moissonné depuis la source Math-Net.Ru
The Esscher–Cramér approach enables us to get representations of large deviation type even if the Cramér condition fails. Moreover, in the case of the scaled sums of a sequence of independent identically distributed random variables these representations turn out to be slightly different from those which are correct under this rigid condition.
Keywords:
generalized Cramér transform, truncated exponential, conditional expectations.
@article{TVP_2004_49_4_a2,
author = {S. V. Zhulenev},
title = {On large {deviations,~II}},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {672--694},
year = {2004},
volume = {49},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2004_49_4_a2/}
}
S. V. Zhulenev. On large deviations, II. Teoriâ veroâtnostej i ee primeneniâ, Tome 49 (2004) no. 4, pp. 672-694. http://geodesic.mathdoc.fr/item/TVP_2004_49_4_a2/
[1] Zhulenev S. V., “O bolshikh ukloneniyakh, I”, Teoriya veroyatn. i ee primen., 44:1 (1999), 34–54 | MR
[2] Zhulenev S. V., “Bolshie ukloneniya. Prosteishaya situatsiya”, Vestn. Mosk. un-ta, 2005, no. 1, 16–25 | MR | Zbl
[3] Saulis L., Statulyavichus V., Predelnye teoremy o bolshikh ukloneniyakh, Mokslas, Vilnyus, 1989, 206 pp. | MR | Zbl
[4] Shiryaev A. N., Veroyatnost, Nauka, M., 1980, 578 pp. | MR | Zbl
[5] Proskuryakov I. V., Sbornik zadach po lineinoi algebre, Nauka, M., 1970, 384 pp. | MR