Absolute continuity between a Gibbs measure
Teoriâ veroâtnostej i ee primeneniâ, Tome 49 (2004) no. 4, pp. 816-826 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We look for an overestimation of the distance in total variation between a Gibbs measure on $R^{Z^d}$ and its translate by a vector of this space. This can be done thanks to a control of the interdependence between the spins at distinct sites, i.e., prescribing some restrictions for the associated potential. We can then conclude, for precise cases, with the equivalence of the initial measure and its translate.
Keywords: random fields, Gibbs measures, equivalence of measures.
Mots-clés : distance in total variation
@article{TVP_2004_49_4_a14,
     author = {E. Nowak},
     title = {Absolute continuity between a {Gibbs} measure},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {816--826},
     year = {2004},
     volume = {49},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2004_49_4_a14/}
}
TY  - JOUR
AU  - E. Nowak
TI  - Absolute continuity between a Gibbs measure
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2004
SP  - 816
EP  - 826
VL  - 49
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TVP_2004_49_4_a14/
LA  - ru
ID  - TVP_2004_49_4_a14
ER  - 
%0 Journal Article
%A E. Nowak
%T Absolute continuity between a Gibbs measure
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2004
%P 816-826
%V 49
%N 4
%U http://geodesic.mathdoc.fr/item/TVP_2004_49_4_a14/
%G ru
%F TVP_2004_49_4_a14
E. Nowak. Absolute continuity between a Gibbs measure. Teoriâ veroâtnostej i ee primeneniâ, Tome 49 (2004) no. 4, pp. 816-826. http://geodesic.mathdoc.fr/item/TVP_2004_49_4_a14/

[1] Davydov Yu. A., Lifshits M. A., “Metod rassloenii v nekotorykh veroyatnostnykh zadachakh”, Itogi nauki i tekhniki, ser. teoriya veroyatn., matem. statist., teoret. kibernet., 22, 1984, 61–157 | MR

[2] Davydov Yu. A., Lifshits M. A., Smorodina N. V., Lokalnye svoistva raspredelenii stokhasticheskikh funktsionalov, Nauka, M., 1995, 256 pp. | MR

[3] Dobrushin R. L., “Gaussian random fields – Gibbsian point of view”, Adv. Probab. Related Topics, 6 (1980), 119–151 | MR | Zbl

[4] Federer H., Geometric Measure Theory, Springer-Verlag, New-York, 1969, 676 pp. | MR

[5] Feldman J., “Equivalence and perpendicularity of Gaussian processes”, Pacific J. Math., 8:4 (1958), 699–708 | MR | Zbl

[6] Georgii H.-O., Gibbs Measures and Phase Transition, de Gruyter, Berlin, 1988, 525 pp. | MR | Zbl

[7] Ibragimov I. A., Rozanov Yu. A., Gaussovskie sluchainye protsessy, Nauka, M., 1970, 384 pp. | MR

[8] Kitada K., Sato H., “On the absolute continuity of infinite product measure and its convolution”, Probab. Theory Related Fields, 81:4 (1989), 609–627 | DOI | MR | Zbl

[9] Künsch H., “Gaussian Markov random fields”, J. Fac. Sci., Univ. Tokyo, 26:1 (1979), 53–73 | MR | Zbl

[10] Lifshits M. A., Gaussian Random Functions, Kluwer, Dordrecht, 1995, 333 pp. | MR | Zbl

[11] Noquet C., “Inequalities for the total variation between two distributions of a sequence and its translate and applications”, Teoriya veroyatn. i ee primen., 44:3 (1999), 653–660 | MR | Zbl

[12] Nowak E., “Distance en variation totale entre une mesure de Gibbs et sa translatée”, C. R. Acad. Sci. Paris, 326:2 (1998), 239–242 | MR | Zbl

[13] Okazaki Y., Sato H., “Distinguishing a sequence of random variables from a random translate of itself”, Ann. Probab., 22:2 (1994), 1092–1096 | DOI | MR | Zbl

[14] Rozanov Yu. A., “O plotnosti odnoi gaussovskoi mery otnositelno drugoi”, Teoriya veroyatn. i ee primen., 7:1 (1962), 87–89 | Zbl

[15] Rozanov Yu. A., “O veroyatnostnykh merakh v funktsionalnykh prostranstvakh, otvechayuschikh gaussovskim statsionarnym protsessam”, Teoriya veroyatn. i ee primen., 9:3 (1964), 448–465 | MR | Zbl

[16] Rozanov Yu. A., “O gaussovskikh polyakh s zadannymi uslovnymi raspredeleniyami”, Teoriya veroyatn. i ee primen., 12:3 (1967), 433–443 | MR | Zbl

[17] Sato H., “Absolute continuity of locally equivalent Mardov chains”, Mem. Fac. Sci., Kyushu Univ., 45:2 (1991), 285–308 | DOI | MR | Zbl

[18] L. A. Shepp, “Distinguishing a sequence of random variables from a translate of itself”, Ann. Math. Statist., 36 (1965), 1107–1112 | DOI | MR | Zbl

[19] Skorokhod A. V., Issledovaniya po teorii sluchainykh protsessov, Kievskii gos. un-t, Kiev, 1961, 216 pp. | Zbl

[20] Skorokhod A. V., Integrirovanie v gilbertovom prostranstve, Nauka, M., 1975, 231 pp.

[21] Skorokhod A. V., Yadrenko M. I., “Absolyutnaya nepreryvnost mer, sootvetstvuyuschikh odnorodnym gaussovskim polyam”, Teoriya veroyatn. i ee primen., 18:1 (1973), 30–43 | Zbl