Mots-clés : distance in total variation
@article{TVP_2004_49_4_a14,
author = {E. Nowak},
title = {Absolute continuity between a {Gibbs} measure},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {816--826},
year = {2004},
volume = {49},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2004_49_4_a14/}
}
E. Nowak. Absolute continuity between a Gibbs measure. Teoriâ veroâtnostej i ee primeneniâ, Tome 49 (2004) no. 4, pp. 816-826. http://geodesic.mathdoc.fr/item/TVP_2004_49_4_a14/
[1] Davydov Yu. A., Lifshits M. A., “Metod rassloenii v nekotorykh veroyatnostnykh zadachakh”, Itogi nauki i tekhniki, ser. teoriya veroyatn., matem. statist., teoret. kibernet., 22, 1984, 61–157 | MR
[2] Davydov Yu. A., Lifshits M. A., Smorodina N. V., Lokalnye svoistva raspredelenii stokhasticheskikh funktsionalov, Nauka, M., 1995, 256 pp. | MR
[3] Dobrushin R. L., “Gaussian random fields – Gibbsian point of view”, Adv. Probab. Related Topics, 6 (1980), 119–151 | MR | Zbl
[4] Federer H., Geometric Measure Theory, Springer-Verlag, New-York, 1969, 676 pp. | MR
[5] Feldman J., “Equivalence and perpendicularity of Gaussian processes”, Pacific J. Math., 8:4 (1958), 699–708 | MR | Zbl
[6] Georgii H.-O., Gibbs Measures and Phase Transition, de Gruyter, Berlin, 1988, 525 pp. | MR | Zbl
[7] Ibragimov I. A., Rozanov Yu. A., Gaussovskie sluchainye protsessy, Nauka, M., 1970, 384 pp. | MR
[8] Kitada K., Sato H., “On the absolute continuity of infinite product measure and its convolution”, Probab. Theory Related Fields, 81:4 (1989), 609–627 | DOI | MR | Zbl
[9] Künsch H., “Gaussian Markov random fields”, J. Fac. Sci., Univ. Tokyo, 26:1 (1979), 53–73 | MR | Zbl
[10] Lifshits M. A., Gaussian Random Functions, Kluwer, Dordrecht, 1995, 333 pp. | MR | Zbl
[11] Noquet C., “Inequalities for the total variation between two distributions of a sequence and its translate and applications”, Teoriya veroyatn. i ee primen., 44:3 (1999), 653–660 | MR | Zbl
[12] Nowak E., “Distance en variation totale entre une mesure de Gibbs et sa translatée”, C. R. Acad. Sci. Paris, 326:2 (1998), 239–242 | MR | Zbl
[13] Okazaki Y., Sato H., “Distinguishing a sequence of random variables from a random translate of itself”, Ann. Probab., 22:2 (1994), 1092–1096 | DOI | MR | Zbl
[14] Rozanov Yu. A., “O plotnosti odnoi gaussovskoi mery otnositelno drugoi”, Teoriya veroyatn. i ee primen., 7:1 (1962), 87–89 | Zbl
[15] Rozanov Yu. A., “O veroyatnostnykh merakh v funktsionalnykh prostranstvakh, otvechayuschikh gaussovskim statsionarnym protsessam”, Teoriya veroyatn. i ee primen., 9:3 (1964), 448–465 | MR | Zbl
[16] Rozanov Yu. A., “O gaussovskikh polyakh s zadannymi uslovnymi raspredeleniyami”, Teoriya veroyatn. i ee primen., 12:3 (1967), 433–443 | MR | Zbl
[17] Sato H., “Absolute continuity of locally equivalent Mardov chains”, Mem. Fac. Sci., Kyushu Univ., 45:2 (1991), 285–308 | DOI | MR | Zbl
[18] L. A. Shepp, “Distinguishing a sequence of random variables from a translate of itself”, Ann. Math. Statist., 36 (1965), 1107–1112 | DOI | MR | Zbl
[19] Skorokhod A. V., Issledovaniya po teorii sluchainykh protsessov, Kievskii gos. un-t, Kiev, 1961, 216 pp. | Zbl
[20] Skorokhod A. V., Integrirovanie v gilbertovom prostranstve, Nauka, M., 1975, 231 pp.
[21] Skorokhod A. V., Yadrenko M. I., “Absolyutnaya nepreryvnost mer, sootvetstvuyuschikh odnorodnym gaussovskim polyam”, Teoriya veroyatn. i ee primen., 18:1 (1973), 30–43 | Zbl