On exact asymptotics in the weak law of large numbers
Teoriâ veroâtnostej i ee primeneniâ, Tome 49 (2004) no. 4, pp. 803-813 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let us consider independent identically distributed random variables $X_1, X_2, \dots\,$, such that $$ U_n=\frac{S_n}{B_n} -n\,a_n \longrightarrow \xi_\alpha\qquad weakly as\quad n\to\infty, $$ where $S_n = X_1 + \cdots + X_n$, $B_n>0$, $a_n$ are some numbers $(n\geq 1)$, and a random variable $\xi_\alpha$ has a stable distribution with characteristic exponent $\alpha\in[1,2]$. Our basic purpose is to find conditions under which $$ \sum_n f_n{P}\big\{U_n\geq\varepsilon\varphi_n\big\}\sim \sum_n f_n{P}\big\{\xi_\alpha\ge\varepsilon\varphi_n\big\}, \qquad\varepsilon\searrow 0, $$ with a positive sequence $\varphi_n$, which tends to infinity and satisfies mild additional restrictions, and with a nonnegative sequence $f_n$ such that $\sum_n f_n =\infty $.
Keywords: independent random variables, law of large numbers, stable law.
@article{TVP_2004_49_4_a12,
     author = {L. V. Rozovskii},
     title = {On exact asymptotics in the weak law of large numbers},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {803--813},
     year = {2004},
     volume = {49},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2004_49_4_a12/}
}
TY  - JOUR
AU  - L. V. Rozovskii
TI  - On exact asymptotics in the weak law of large numbers
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2004
SP  - 803
EP  - 813
VL  - 49
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TVP_2004_49_4_a12/
LA  - ru
ID  - TVP_2004_49_4_a12
ER  - 
%0 Journal Article
%A L. V. Rozovskii
%T On exact asymptotics in the weak law of large numbers
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2004
%P 803-813
%V 49
%N 4
%U http://geodesic.mathdoc.fr/item/TVP_2004_49_4_a12/
%G ru
%F TVP_2004_49_4_a12
L. V. Rozovskii. On exact asymptotics in the weak law of large numbers. Teoriâ veroâtnostej i ee primeneniâ, Tome 49 (2004) no. 4, pp. 803-813. http://geodesic.mathdoc.fr/item/TVP_2004_49_4_a12/

[1] Baum L. E., Katz M., “Convergence rates in the law of large numbers”, Trans. Amer. Math. Soc., 120 (1965), 108–123 | DOI | MR | Zbl

[2] Gut A., Spǎtaru A., “Precise asymptotics in the Baum–Katz and Davis laws of large numbers”, J. Math. Anal. Appl., 248:1 (2000), 233–246 | DOI | MR | Zbl

[3] Rozovskii L. V., “Nekotorye predelnye teoremy dlya bolshikh uklonenii summ nezavisimykh sluchainykh velichin s obschei funktsiei raspredeleniya iz oblasti prityazheniya normalnogo zakona”, Zapiski nauchn. semin. POMI, 294, 2002, 165–193 | Zbl

[4] Li D. L., Wang X. C., Rao M. B., “Some results on convergence rates for probabilities of moderate deviations for sums of random variables”, Internat. J. Math. Math. Sci., 15:3 (1992), 481–498 | DOI | MR

[5] Heyde C. C., “A supplement to the strong law of large numbers”, J. Appl. Probab., 12 (1975), 173–175 | DOI | MR | Zbl

[6] Chen R., “A remark on the tail probability of a distribution”, J. Multivariate Anal., 8:2 (1978), 328–333 | DOI | MR | Zbl

[7] Spǎtaru A., “Precise asymptotics in Spitzer's law of large numbers”, J. Theoret. Probab., 12:3 (1999), 811–819 | DOI | MR

[8] Rozovskii L. V., “O tochnoi asimptotike v slabom zakone bolshikh chisel dlya summ nezavisimykh sluchainykh velichin s obschei funktsiei raspredeleniya iz oblasti prityazheniya ustoichivogo zakona”, Teoriya veroyatn. i ee primen., 48:3 (2003), 589–596 | MR

[9] Gut A., Spǎtaru A., “Precise asymptotics in the law of the iterated logarithm”, Ann. Probab., 28:4 (2000), 1870–1883 | DOI | MR | Zbl

[10] Feller V., Vvedenie v teoriyu veroyatnostei i ee prilozheniya, v. 2, Mir, M., 1984, 752 pp. | MR

[11] Zolotarev V. M., Odnomernye ustoichivye raspredeleniya, Nauka, M., 1983, 304 pp. | MR

[12] Rozovskii L. V., “Odna otsenka dlya veroyatnostei bolshikh uklonenii”, Matem. zametki, 42:1 (1987), 145–156 | MR

[13] Petrov V. V., Predelnye teoremy dlya summ nezavisimykh sluchainykh velichin, Nauka, M., 1987, 317 pp. | MR