On large deviations of a self-normalized
Teoriâ veroâtnostej i ee primeneniâ, Tome 49 (2004) no. 4, pp. 794-802 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the present paper we deduce exponential bounds on the probabilities of large deviations of a self-normalized sum of independent random variables. Summands are not assumed to be identically distributed.
Keywords: Berry–Esseen bound, Lyapunov ratio, self-normalized sum, large deviations.
@article{TVP_2004_49_4_a11,
     author = {S. V. Nagaev},
     title = {On large deviations of a self-normalized},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {794--802},
     year = {2004},
     volume = {49},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2004_49_4_a11/}
}
TY  - JOUR
AU  - S. V. Nagaev
TI  - On large deviations of a self-normalized
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2004
SP  - 794
EP  - 802
VL  - 49
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TVP_2004_49_4_a11/
LA  - ru
ID  - TVP_2004_49_4_a11
ER  - 
%0 Journal Article
%A S. V. Nagaev
%T On large deviations of a self-normalized
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2004
%P 794-802
%V 49
%N 4
%U http://geodesic.mathdoc.fr/item/TVP_2004_49_4_a11/
%G ru
%F TVP_2004_49_4_a11
S. V. Nagaev. On large deviations of a self-normalized. Teoriâ veroâtnostej i ee primeneniâ, Tome 49 (2004) no. 4, pp. 794-802. http://geodesic.mathdoc.fr/item/TVP_2004_49_4_a11/

[1] Logan B. F., Mallows C. L., Rice S. O., Shepp L. A., “Limit distributions of self-normalized sums”, Ann. Probab., 1:5 (1973), 788–809 | DOI | MR | Zbl

[2] Bentkus V., Götze F., “The Berry–Esseen bounds for Student's statistic”, Ann. Probab., 24:1 (1996), 491–503 | DOI | MR | Zbl

[3] Shao Q.-M., “A Cramér type large deviation result for Student's $t$-statistic”, J. Theoret. Probab., 12:2 (1999), 385–398 | DOI | MR | Zbl

[4] Wang Q., Jing B.-Y., “An exponential nonuniform Berry–Esseen bound for self-normalized sums”, Ann. Probab., 27:4 (1999), 2068–2088 | DOI | MR | Zbl

[5] Giné E., Götze F., Mason D. M., “When is the Student $t$-statistic asymptotically standard normal?”, Ann. Probab., 25:3 (1997), 1514–1531 | DOI | MR | Zbl

[6] Giné E., Mason D. M., “On the LIL for self-normalized sums of IID random variables”, J. Theoret. Probab., 11:2 (1998), 351–370 | DOI | MR | Zbl

[7] He X., Shao Q.-M., “On parameters of increasing dimensions”, J. Multivariate Anal., 73:1 (2000), 120–135 | DOI | MR | Zbl

[8] Nagaev S. V., “Nekotorye utochneniya veroyatnostnykh i momentnykh neravenstv”, Teoriya veroyatn. i ee primen., 42:4 (1997), 832–838 | MR | Zbl

[9] Nagaev S. V., “Nizhnie otsenki dlya veroyatnostei bolshikh uklonenii summ nezavisimykh sluchainykh velichin”, Teoriya veroyatn. i ee primen., 46:1 (2001), 50–73 | MR | Zbl

[10] Petrov V. V., Predelnye teoremy dlya summ nezavisimykh sluchainykh velichin, Nauka, M., 1987, 320 pp. | MR