On large deviations of a self-normalized
Teoriâ veroâtnostej i ee primeneniâ, Tome 49 (2004) no. 4, pp. 794-802

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present paper we deduce exponential bounds on the probabilities of large deviations of a self-normalized sum of independent random variables. Summands are not assumed to be identically distributed.
Keywords: Berry–Esseen bound, Lyapunov ratio, self-normalized sum, large deviations.
@article{TVP_2004_49_4_a11,
     author = {S. V. Nagaev},
     title = {On large deviations of a self-normalized},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {794--802},
     publisher = {mathdoc},
     volume = {49},
     number = {4},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2004_49_4_a11/}
}
TY  - JOUR
AU  - S. V. Nagaev
TI  - On large deviations of a self-normalized
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2004
SP  - 794
EP  - 802
VL  - 49
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_2004_49_4_a11/
LA  - ru
ID  - TVP_2004_49_4_a11
ER  - 
%0 Journal Article
%A S. V. Nagaev
%T On large deviations of a self-normalized
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2004
%P 794-802
%V 49
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_2004_49_4_a11/
%G ru
%F TVP_2004_49_4_a11
S. V. Nagaev. On large deviations of a self-normalized. Teoriâ veroâtnostej i ee primeneniâ, Tome 49 (2004) no. 4, pp. 794-802. http://geodesic.mathdoc.fr/item/TVP_2004_49_4_a11/