Maxima of independent sums in the presence of
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 49 (2004) no. 4, pp. 791-794
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Let
$$Y_{mn}=\max_{1\le i\le m}\sum_{j=1}^n X_{ij},\qquad m,n\ge 1,$$
be a family of extremes, where $X_{ij}$, $i,j\ge 1$,
are independent with common subexponential distribution $F$. The limit
behavior of $Y_{mn}$ is investigated as  $m,n\to\infty$. Various
nondegenerate limit laws are obtained (Fréchet and Gumbel),
depending on the relative rate of growth of  $m,n$ and the tail
behavior of $F$.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Mots-clés : 
maxima
Keywords: sums, regularly varying tails, subexponentiality, nondegenerate limit laws, linear scalingю.
                    
                  
                
                
                Keywords: sums, regularly varying tails, subexponentiality, nondegenerate limit laws, linear scalingю.
@article{TVP_2004_49_4_a10,
     author = {A. V. Lebedev},
     title = {Maxima of independent sums in the presence of},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {791--794},
     publisher = {mathdoc},
     volume = {49},
     number = {4},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2004_49_4_a10/}
}
                      
                      
                    A. V. Lebedev. Maxima of independent sums in the presence of. Teoriâ veroâtnostej i ee primeneniâ, Tome 49 (2004) no. 4, pp. 791-794. http://geodesic.mathdoc.fr/item/TVP_2004_49_4_a10/
