Maxima of independent sums in the presence of
Teoriâ veroâtnostej i ee primeneniâ, Tome 49 (2004) no. 4, pp. 791-794 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $$Y_{mn}=\max_{1\le i\le m}\sum_{j=1}^n X_{ij},\qquad m,n\ge 1,$$ be a family of extremes, where $X_{ij}$, $i,j\ge 1$, are independent with common subexponential distribution $F$. The limit behavior of $Y_{mn}$ is investigated as $m,n\to\infty$. Various nondegenerate limit laws are obtained (Fréchet and Gumbel), depending on the relative rate of growth of $m,n$ and the tail behavior of $F$.
Mots-clés : maxima
Keywords: sums, regularly varying tails, subexponentiality, nondegenerate limit laws, linear scalingю.
@article{TVP_2004_49_4_a10,
     author = {A. V. Lebedev},
     title = {Maxima of independent sums in the presence of},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {791--794},
     year = {2004},
     volume = {49},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2004_49_4_a10/}
}
TY  - JOUR
AU  - A. V. Lebedev
TI  - Maxima of independent sums in the presence of
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2004
SP  - 791
EP  - 794
VL  - 49
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TVP_2004_49_4_a10/
LA  - ru
ID  - TVP_2004_49_4_a10
ER  - 
%0 Journal Article
%A A. V. Lebedev
%T Maxima of independent sums in the presence of
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2004
%P 791-794
%V 49
%N 4
%U http://geodesic.mathdoc.fr/item/TVP_2004_49_4_a10/
%G ru
%F TVP_2004_49_4_a10
A. V. Lebedev. Maxima of independent sums in the presence of. Teoriâ veroâtnostej i ee primeneniâ, Tome 49 (2004) no. 4, pp. 791-794. http://geodesic.mathdoc.fr/item/TVP_2004_49_4_a10/

[1] Ivchenko G. I., “Variatsionnyi ryad dlya skhemy summirovaniya nezavisimykh velichin”, Teoriya veroyatn. i ee primen., 18:3 (1973), 557–570

[2] Lebedev A. V., “Predelnye teoremy dlya maksimumov nezavisimykh sluchainykh summ”, Teoriya veroyatn. i ee primen., 44:3 (1999), 631–633 | MR | Zbl

[3] Kang S., Serfozo R. F., “Extreme values of phase-type and mixed random variables with parallel-processing examples”, J. Appl. Probab., 36:1 (1999), 194–210 | DOI | MR | Zbl

[4] Matsak I. K., “Ob otnositelnoi ustoichivosti ekstremalnykh sluchainykh funktsii”, Matem. zametki, 71:5 (2002), 787–790 | MR | Zbl

[5] Chistyakov V. P., “Teorema o summakh nezavisimykh polozhitelnykh sluchainykh velichin i ee prilozheniya k vetvyaschimsya sluchainym protsessam”, Teoriya veroyatn. i ee primen., 9:4 (1964), 710–718 | Zbl

[6] Rogozin B. A., “O postoyannoi v opredelenii subeksponentsialnykh raspredelenii”, Teoriya veroyatn. i ee primen., 44:2 (1999), 455–458 | MR | Zbl

[7] Feller V., Vvedenie v teoriyu veroyatnostei i ee prilozheniya, v. 2, Mir, M., 1984, 752 pp. | MR

[8] Seneta E., Pravilno menyayuschiesya funktsii, Nauka, M., 1985, 142 pp. | MR | Zbl

[9] Tkachuk S. G., “Teorema o bolshikh ukloneniyakh v $\mathbb R^s$ v sluchae ustoichivogo predelnogo zakona”, Sluchainye protsessy i statisticheskie vyvody, v. 4, Fan, Tashkent, 1974, 178–184 | MR

[10] Nagaev S. V., “Large deviations of sums of independent random variables”, Ann. Probab., 7:5 (1979), 745–789 | DOI | MR | Zbl