On the central limit theorem for Toeplitz quadratic forms
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 49 (2004) no. 4, pp. 653-671
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Let $X(t)$, $t = 0,\pm1,\ldots$, be a real-valued
stationary Gaussian sequence with a spectral density function
$f(\lambda)$. The paper considers the question of
applicability of the central limit theorem (CLT) for a
Toeplitz-type quadratic form $Q_n$ in variables $X(t)$,
generated by an integrable even function $g(\lambda)$.
Assuming that $f(\lambda)$ and $g(\lambda)$ are
regularly varying at $\lambda=0$ of orders $\alpha$ and $\beta$,
respectively, we prove the CLT for the standard normalized
quadratic form $Q_n$ in a critical case
$\alpha+\beta=\frac{1}{2}$.
We also show that the CLT is not valid under
the single condition that the asymptotic variance of $Q_n$
is separated from zero and infinity.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
stationary Gaussian sequence, spectral density, Toeplitz-type quadratic forms, central limit theorem, asymptotic variance, slowly varying functions.
                    
                  
                
                
                @article{TVP_2004_49_4_a1,
     author = {A. A. Sahakian and M. S. Ginovyan},
     title = {On the central limit theorem for {Toeplitz} quadratic forms},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {653--671},
     publisher = {mathdoc},
     volume = {49},
     number = {4},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2004_49_4_a1/}
}
                      
                      
                    A. A. Sahakian; M. S. Ginovyan. On the central limit theorem for Toeplitz quadratic forms. Teoriâ veroâtnostej i ee primeneniâ, Tome 49 (2004) no. 4, pp. 653-671. http://geodesic.mathdoc.fr/item/TVP_2004_49_4_a1/
