A probabilistic approach to a solution of nonlinear parabolic
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 49 (2004) no. 4, pp. 625-652
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We construct a probabilistic representation of  the Cauchy problem
solution for a system of nonlinear parabolic equations and give
the conditions which guarantee that this representation can be
applied to construct and investigate a solution of the Cauchy
problem for a system of nonlinear hyperbolic equations. As an
example, we consider the system of gas dynamic equations and its
parabolic regularization.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Mots-clés : 
diffusion processes
Keywords: multiplicative operator functionals, systems of nonlinear parabolic and hyperbolic equations, vanishing viscosity methodю.
                    
                  
                
                
                Keywords: multiplicative operator functionals, systems of nonlinear parabolic and hyperbolic equations, vanishing viscosity methodю.
@article{TVP_2004_49_4_a0,
     author = {Ya. I. Belopol'skaya},
     title = {A probabilistic approach to a solution of nonlinear parabolic},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {625--652},
     publisher = {mathdoc},
     volume = {49},
     number = {4},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2004_49_4_a0/}
}
                      
                      
                    Ya. I. Belopol'skaya. A probabilistic approach to a solution of nonlinear parabolic. Teoriâ veroâtnostej i ee primeneniâ, Tome 49 (2004) no. 4, pp. 625-652. http://geodesic.mathdoc.fr/item/TVP_2004_49_4_a0/
