A probabilistic approach to a solution of nonlinear parabolic
Teoriâ veroâtnostej i ee primeneniâ, Tome 49 (2004) no. 4, pp. 625-652 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We construct a probabilistic representation of the Cauchy problem solution for a system of nonlinear parabolic equations and give the conditions which guarantee that this representation can be applied to construct and investigate a solution of the Cauchy problem for a system of nonlinear hyperbolic equations. As an example, we consider the system of gas dynamic equations and its parabolic regularization.
Mots-clés : diffusion processes
Keywords: multiplicative operator functionals, systems of nonlinear parabolic and hyperbolic equations, vanishing viscosity methodю.
@article{TVP_2004_49_4_a0,
     author = {Ya. I. Belopol'skaya},
     title = {A probabilistic approach to a solution of nonlinear parabolic},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {625--652},
     year = {2004},
     volume = {49},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2004_49_4_a0/}
}
TY  - JOUR
AU  - Ya. I. Belopol'skaya
TI  - A probabilistic approach to a solution of nonlinear parabolic
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2004
SP  - 625
EP  - 652
VL  - 49
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TVP_2004_49_4_a0/
LA  - ru
ID  - TVP_2004_49_4_a0
ER  - 
%0 Journal Article
%A Ya. I. Belopol'skaya
%T A probabilistic approach to a solution of nonlinear parabolic
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2004
%P 625-652
%V 49
%N 4
%U http://geodesic.mathdoc.fr/item/TVP_2004_49_4_a0/
%G ru
%F TVP_2004_49_4_a0
Ya. I. Belopol'skaya. A probabilistic approach to a solution of nonlinear parabolic. Teoriâ veroâtnostej i ee primeneniâ, Tome 49 (2004) no. 4, pp. 625-652. http://geodesic.mathdoc.fr/item/TVP_2004_49_4_a0/

[1] Daletskii Yu. L., “Funktsionalnye integraly, assotsiirovannye s differentsialnymi uravneniyami i sistemami”, Dokl. AN SSSR, 137:2 (1966), 268–271

[2] Daletskii Yu. L., “Funktsionalnye integraly, assotsiirovannye s operatornymi evolyutsionnymi uravneniyami”, Uspekhi matem. nauk, 17:5 (1962), 3–115 | MR | Zbl

[3] Stroock D., “On certain systems of parabolic equations”, Comm. Pure Appl. Math., 23 (1970), 447–457 | DOI | MR | Zbl

[4] Griego R. J., Hersh R., “Random evolutions, Markov chains, and systems of partial differential equations”, Proc. Natl. Acad. Sci. USA, 62:2 (1969), 305–308 | DOI | MR | Zbl

[5] Griego R. J., Hersh R., “Theory of random evolutions with applications to partial differential equations”, Trans. Amer. Math. Soc., 156 (1971), 405–418 | DOI | MR | Zbl

[6] Gikhman I. I., Skorokhod A. V., Teoriya sluchainykh protsessov, v. 2, Fizmatgiz, M., 1973, 640 pp.

[7] McKean H. P., Jr., “A class of Markov processes associated with nonlinear parabolic equations”, Proc. Natl. Acad. Sci. USA, 59:6 (1966), 1907–1911 | DOI | MR

[8] Freidlin M. I., “Kvazilineinye parabolicheskie uravneniya i mery v funktsionalnom prostranstve”, Funkts. analiz i ego prilozh., 1:3 (1967), 74–82 | MR | Zbl

[9] Freidlin M., Functional Integration and Partial Differential Equations, Princeton Univ. Press, Princeton, 1985, 545 pp. | MR | Zbl

[10] Belopolskaya Ya. I., Daletskii Yu. L., “Issledovanie zadachi Koshi dlya sistemy kvazilineinykh uravnenii s pomoschyu markovskikh sluchainykh protsessov”, Izv. vuzov, 1978, no. 12, 6–17

[11] Daletskii Yu. L., Belopolskaya Ya. I., Stokhasticheskie uravneniya i differentsialnaya geometriya, Vyscha shkola, Kiev, 1989, 295 pp. | MR

[12] Belopolskaya Ya. I., Daletskii Yu. L., “Markovskie protsessy, assotsiirovannye s nelineinymi parabolicheskimi uravneniyami”, Dokl. AN SSSR, 250:3 (1980), 268–271 | MR

[13] Belopolskaya Ya. I., “Veroyatnostnyi podkhod k resheniyu nelineinykh parabolicheskikh uravnenii”, Problemy matem. analiza, 13 (1992), 21–35

[14] Sarafyan V., Diffuzionnye protsessy i differentsialnye uravneniya s malym parametrom, Avtoref. diss. $\dots$ dokt. fiz-matem. nauk, Erevan, 1985

[15] Hopf E., “The partial differential equation $u_t+uu_x=\mu u_{xx}$”, Comm. Pure Appl. Math., 3 (1950), 201–230 | DOI | MR | Zbl

[16] Belopolskaya Ya. I., “Veroyatnostnye predstavleniya reshenii zadachi Koshi dlya sistem parabolicheskikh uravnenii”, Dokl. RAN, 389:4 (2003), 444–447 | MR

[17] E. Weinan, Rykov Yu., Sinai Ya., “Generalized variational principles, global weak solutions and behaviour with random initial data for systems of conservation laws arising in adhesion particle dynamics”, Comm. Math. Phys., 177:2 (1996), 349–380 | DOI | MR | Zbl

[18] Dermoune A., “Probabilistic interpretation of sticky particle model”, Ann. Probab., 27:3 (1999), 1357–1367 | DOI | MR | Zbl

[19] Burgers J., The Nonlinear Diffusion Equation, Reidel, Dordrecht, Boston, 1974, 173 pp. | Zbl

[20] Woyczynski W., Burgers-KPZ turbulence, Lecture Notes in Math., 1700, 1998, 318 pp. | MR | Zbl

[21] Belopolskaya Ya. I., “Nelineinye uravneniya v teorii diffuzionnykh protsessov”, Zap. nauchn. semin. POMI, 278, 2001, 15–35

[22] Belopolskaya Ya., Nonlinear PDEs in Diffusion Theory, Preprint No 705, Bonn University, Bonn, 2001, 39 pp.

[23] Vatanabe S., Ikeda N., Stokhasticheskie differentsialnye uravneniya i diffuzionnye protsessy, Nauka, M., 1986, 445 pp. | MR

[24] Joseph K. T., “A Riemann problem whose viscosity solutions contain $\delta$-measures”, Asymptot. Anal., 7:2 (1993), 105–120 | MR | Zbl

[25] Belopolskaya Ya., “Burgers equation on a Hilbert manifold and the motion of incompressible fluid”, Methods Funct. Anal. Topology, 5:4 (1999), 15–27 | MR

[26] Belopolskaya Ya. I., “Gladkie diffuzionnye mery i ikh preobrazovaniya”, Zap. nauchn. semin. POMI, 260, 1999, 31–49 | MR | Zbl

[27] Belopolskaya Ya. I., “Nelineinye preobrazovaniya evolyutsionnykh semeistv, porozhdennykh diffuzionnymi protsessami”, Problemy matem. analiza, 25 (2003), 35–55

[28] Málek J., Necas J., Rokyta M., Ruzicka M., Weak and Measure-Valued Solutions to Evolutionary PDEs, World Scientific, Singapore, 2001 | Zbl