On the decomposition of lattice distributions
Teoriâ veroâtnostej i ee primeneniâ, Tome 49 (2004) no. 3, pp. 589-596 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This work provides some results on the convolutions of a special kind of signed measure known as the Poisson signed measure. We show a simple way of obtaining asymptotic decompositions into convolutions of Poisson signed measure that is appropriate for a broad range of lattice distributions. The work demonstrates the analogy between such decompositions and the classic Gram–Charlier decompositions of type $A$ and $B$, and the Edgeworth-Cramer series.
Keywords: Poisson signed measure, convolutions of Poisson signed measure, asymptotic decompositions, lattice random variables.
@article{TVP_2004_49_3_a8,
     author = {D. N. Karymov},
     title = {On the decomposition of lattice distributions},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {589--596},
     year = {2004},
     volume = {49},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2004_49_3_a8/}
}
TY  - JOUR
AU  - D. N. Karymov
TI  - On the decomposition of lattice distributions
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2004
SP  - 589
EP  - 596
VL  - 49
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TVP_2004_49_3_a8/
LA  - ru
ID  - TVP_2004_49_3_a8
ER  - 
%0 Journal Article
%A D. N. Karymov
%T On the decomposition of lattice distributions
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2004
%P 589-596
%V 49
%N 3
%U http://geodesic.mathdoc.fr/item/TVP_2004_49_3_a8/
%G ru
%F TVP_2004_49_3_a8
D. N. Karymov. On the decomposition of lattice distributions. Teoriâ veroâtnostej i ee primeneniâ, Tome 49 (2004) no. 3, pp. 589-596. http://geodesic.mathdoc.fr/item/TVP_2004_49_3_a8/

[1] Zigmund A., Trigonometricheskie ryady, v. 1, Mir, M., 1965, 615 pp. | MR

[2] Prokhorov Yu. V., “Asimptoticheskoe povedenie binomialnogo raspredeleniya”, Uspekhi matem. nauk, 8:3 (1953), 135–142 | MR

[3] Gram J. P., “Über die Entwickelung reeller Functionen in Reihen mittelst der Methode der kleinsten Quadrate”, J. Reine Angew. Math., 94 (1883), 41–73

[4] Charlier C. V. L., “Contributions to the mathematical theory of statistics. 5”, Arkiv. Mat. Astr. Fys., 9:25 (1914), 17 | Zbl

[5] Kruopis Yu., “Tochnost approksimatsii obobschennogo binomialnogo raspredeleniya svertkami puassonovskikh mer”, Litov. matem. sb., 26:1 (1986), 53–69 | MR | Zbl

[6] Kruopis Yu., “Approksimatsii raspredelenii summ reshetchatykh sluchainykh velichin. I, II”, Litov. matem. sb., 26:3 (1986), 455–467 ; 4, 692–704 | MR | Zbl | MR | Zbl

[7] Barbour A. D., Čekanavičius V., “Total variation asymptotics for sums of independent integer random variables”, Ann. Probab., 30:2 (2002), 509–545 | DOI | MR | Zbl

[8] Barbour A. D., Chryssaphinou O., “Compound Poisson approximation: a user's guide”, Ann. Appl. Probab., 11:3 (2001), 964–1002 | DOI | MR | Zbl

[9] Chyakanavichyus V., “Ob obobschennykh puassonovskikh approksimatsiyakh pri momentnykh ogranicheniyakh”, Teoriya veroyatn. i ee primen., 44:1 (1999), 74–86 | MR

[10] Yakshyavichyus Sh., “O nekotorom sposobe razlozheniya veroyatnostei reshetchatykh sluchainykh velichin”, Teoriya veroyatn. i ee primen., 42:2 (1997), 294–307 | MR | Zbl