An extended version of
Teoriâ veroâtnostej i ee primeneniâ, Tome 49 (2004) no. 3, pp. 503-521 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This work considers an extension of the Dalang–Morton–Willinger theorem (the first fundamental theorem of asset pricing) in the presence of random convex constraints on the asset portfolio. The arbitrage-free assumption is characterized both in terms of a natural generalization of the notion of the martingale measure and in terms of supports of conditional distributions of price increments. The proposed approach relies on the well-known results for the case of a perfect market and is connected with the theory of measurable set-valued mappings.
Mots-clés : arbitrage, Doob decompositionю.
Keywords: free lunch, measurable set-valued mappings, support of a conditional distribution, martingale measures
@article{TVP_2004_49_3_a4,
     author = {D. B. Rokhlin},
     title = {An extended version of},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {503--521},
     year = {2004},
     volume = {49},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2004_49_3_a4/}
}
TY  - JOUR
AU  - D. B. Rokhlin
TI  - An extended version of
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2004
SP  - 503
EP  - 521
VL  - 49
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TVP_2004_49_3_a4/
LA  - ru
ID  - TVP_2004_49_3_a4
ER  - 
%0 Journal Article
%A D. B. Rokhlin
%T An extended version of
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2004
%P 503-521
%V 49
%N 3
%U http://geodesic.mathdoc.fr/item/TVP_2004_49_3_a4/
%G ru
%F TVP_2004_49_3_a4
D. B. Rokhlin. An extended version of. Teoriâ veroâtnostej i ee primeneniâ, Tome 49 (2004) no. 3, pp. 503-521. http://geodesic.mathdoc.fr/item/TVP_2004_49_3_a4/

[1] Dalang R. C., Morton A., Willinger W., “Equivalent martingale measures and no-arbitrage in stochastic securities market models”, Stochastics Stochastics Rep., 29:2 (1990), 185–201 | MR | Zbl

[2] Shiryaev A. N., Osnovy stokhasticheskoi finansovoi matematiki, v. 2, Teoriya, Fazis, M., 1998, 528 pp.

[3] Schachermayer W., “A Hilbert space proof of the fundamental theorem of asset pricing in finite discrete time”, Insurance Math. Econom., 11:4 (1992), 249–257 | DOI | MR | Zbl

[4] Kabanov Yu. M., Kramkov D. O., “Otsutstvie arbitrazha i ekvivalentnye martingalnye mery: novoe dokazatelstvo teoremy Kharrisona–Pliski”, Teoriya veroyatn. i ee primen., 39:3 (1994), 635–640 | MR | Zbl

[5] Rogers L. C. G., “Equivalent martingale measures and no-arbitrage”, Stochastics Stochastics Rep., 51:1–2 (1995), 41–49 | MR

[6] Jacod J., Shiryaev A. N., “Local martingales and the fundamental asset pricing theorems in the discrete-time case”, Finance Stoch., 2:3 (1998), 259–273 | DOI | MR | Zbl

[7] Kabanov Yu., Stricker C., “A teacher's note on no-arbitrage criteria”, Lecture Notes in Math., 1755, 2001, 149–152 | MR | Zbl

[8] Schürger K., “On the existence of equivalent $\tau$-measures in finite discrete time”, Stochastic Process. Appl., 61:1 (1996), 109–128 | DOI | MR | Zbl

[9] Brannath W., No arbitrage and martingale measures in option pricing, Doct. Diss., Wien Universität, Wien, 1997

[10] Pham H., Touzi N., “The fundamental theorem of asset pricing with cone constraints”, J. Math. Econom., 31:2 (1999), 265–279 | DOI | MR | Zbl

[11] Carassus L., Pham H., Touzi N., “No arbitrage in discrete time under portfolio constraints”, Math. Finance, 11:3 (2001), 315–329 | DOI | MR | Zbl

[12] Napp C., “The Dalang–Morton–Willinger theorem under cone constraints”, J. Math. Econom., 39:1–2 (2003), 111–126 | DOI | MR | Zbl

[13] Evstigneev I. V., Schürger K., Taksar M. I., On the fundamental theorem of asset pricing: random constraints and bang-bang no-arbitrage criteria, Discussion paper No 24/2002, University of Bonn, Bonn, 2002; Math. Finance, 14:2 (2004), 201–221 | DOI | MR | Zbl

[14] Rokhlin D. B., “Rasshirennaya versiya pervoi fundamentalnoi teoremy finansovoi matematiki pri konicheskikh ogranicheniyakh na portfel”, Obozr. prikl. i promyshl. matem., 9:1 (2002), 131–132 | MR

[15] Rokafellar R. T., Vypuklyi analiz, Mir, M., 1973, 469 pp.

[16] Himmelberg C. J., “Measurable relations”, Fund. Math., 87 (1975), 53–72 | MR | Zbl

[17] Levin V. L., Vypuklyi analiz v prostranstvakh izmerimykh funktsii i ego primenenie v matematike i ekonomike, Nauka, M., 1985, 352 pp. | MR

[18] Evstigneev I. V., “Teoremy izmerimogo vybora i veroyatnostnye modeli upravleniya v obschikh topologicheskikh prostranstvakh”, Matem. sb., 131:1 (1986), 27–39 | MR | Zbl

[19] Bogachev V. I., Osnovy teorii mery, v. 1, NITs “Regulyarnaya i khaoticheskaya dinamika”, Moskva, Izhevsk, 2003, 544 pp.

[20] Arkin V. I., Evstigneev I. V., Stochastic Models of Control and Economic Dynamics, Academic Press, London, 1987, 208 pp.

[21] Taraldsen G., Random sets and spectra of unbounded linear operators, Report No 18, Mittag-Leffler Inst., Djursholm, 1992/93

[22] Pham H., “Dynamic $L^p$-hedging in discrete time under cone constraints”, SIAM J. Control Optim., 38:3 (2000), 665–682 | DOI | MR | Zbl