Keywords: free lunch, measurable set-valued mappings, support of a conditional distribution, martingale measures
@article{TVP_2004_49_3_a4,
author = {D. B. Rokhlin},
title = {An extended version of},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {503--521},
year = {2004},
volume = {49},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2004_49_3_a4/}
}
D. B. Rokhlin. An extended version of. Teoriâ veroâtnostej i ee primeneniâ, Tome 49 (2004) no. 3, pp. 503-521. http://geodesic.mathdoc.fr/item/TVP_2004_49_3_a4/
[1] Dalang R. C., Morton A., Willinger W., “Equivalent martingale measures and no-arbitrage in stochastic securities market models”, Stochastics Stochastics Rep., 29:2 (1990), 185–201 | MR | Zbl
[2] Shiryaev A. N., Osnovy stokhasticheskoi finansovoi matematiki, v. 2, Teoriya, Fazis, M., 1998, 528 pp.
[3] Schachermayer W., “A Hilbert space proof of the fundamental theorem of asset pricing in finite discrete time”, Insurance Math. Econom., 11:4 (1992), 249–257 | DOI | MR | Zbl
[4] Kabanov Yu. M., Kramkov D. O., “Otsutstvie arbitrazha i ekvivalentnye martingalnye mery: novoe dokazatelstvo teoremy Kharrisona–Pliski”, Teoriya veroyatn. i ee primen., 39:3 (1994), 635–640 | MR | Zbl
[5] Rogers L. C. G., “Equivalent martingale measures and no-arbitrage”, Stochastics Stochastics Rep., 51:1–2 (1995), 41–49 | MR
[6] Jacod J., Shiryaev A. N., “Local martingales and the fundamental asset pricing theorems in the discrete-time case”, Finance Stoch., 2:3 (1998), 259–273 | DOI | MR | Zbl
[7] Kabanov Yu., Stricker C., “A teacher's note on no-arbitrage criteria”, Lecture Notes in Math., 1755, 2001, 149–152 | MR | Zbl
[8] Schürger K., “On the existence of equivalent $\tau$-measures in finite discrete time”, Stochastic Process. Appl., 61:1 (1996), 109–128 | DOI | MR | Zbl
[9] Brannath W., No arbitrage and martingale measures in option pricing, Doct. Diss., Wien Universität, Wien, 1997
[10] Pham H., Touzi N., “The fundamental theorem of asset pricing with cone constraints”, J. Math. Econom., 31:2 (1999), 265–279 | DOI | MR | Zbl
[11] Carassus L., Pham H., Touzi N., “No arbitrage in discrete time under portfolio constraints”, Math. Finance, 11:3 (2001), 315–329 | DOI | MR | Zbl
[12] Napp C., “The Dalang–Morton–Willinger theorem under cone constraints”, J. Math. Econom., 39:1–2 (2003), 111–126 | DOI | MR | Zbl
[13] Evstigneev I. V., Schürger K., Taksar M. I., On the fundamental theorem of asset pricing: random constraints and bang-bang no-arbitrage criteria, Discussion paper No 24/2002, University of Bonn, Bonn, 2002; Math. Finance, 14:2 (2004), 201–221 | DOI | MR | Zbl
[14] Rokhlin D. B., “Rasshirennaya versiya pervoi fundamentalnoi teoremy finansovoi matematiki pri konicheskikh ogranicheniyakh na portfel”, Obozr. prikl. i promyshl. matem., 9:1 (2002), 131–132 | MR
[15] Rokafellar R. T., Vypuklyi analiz, Mir, M., 1973, 469 pp.
[16] Himmelberg C. J., “Measurable relations”, Fund. Math., 87 (1975), 53–72 | MR | Zbl
[17] Levin V. L., Vypuklyi analiz v prostranstvakh izmerimykh funktsii i ego primenenie v matematike i ekonomike, Nauka, M., 1985, 352 pp. | MR
[18] Evstigneev I. V., “Teoremy izmerimogo vybora i veroyatnostnye modeli upravleniya v obschikh topologicheskikh prostranstvakh”, Matem. sb., 131:1 (1986), 27–39 | MR | Zbl
[19] Bogachev V. I., Osnovy teorii mery, v. 1, NITs “Regulyarnaya i khaoticheskaya dinamika”, Moskva, Izhevsk, 2003, 544 pp.
[20] Arkin V. I., Evstigneev I. V., Stochastic Models of Control and Economic Dynamics, Academic Press, London, 1987, 208 pp.
[21] Taraldsen G., Random sets and spectra of unbounded linear operators, Report No 18, Mittag-Leffler Inst., Djursholm, 1992/93
[22] Pham H., “Dynamic $L^p$-hedging in discrete time under cone constraints”, SIAM J. Control Optim., 38:3 (2000), 665–682 | DOI | MR | Zbl