Limit theorem for
Teoriâ veroâtnostej i ee primeneniâ, Tome 49 (2004) no. 3, pp. 461-484 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A continuous time branching random walk on the lattice $Z$ is considered in which individuals may produce children at the origin only. Assuming that the underlying Markov random walk is homogeneous and symmetric and the offspring reproduction law is critical, we describe the asymptotic behavior as $t\to\infty$ of the conditional distribution of the two-dimensional vector $(\zeta(t), \mu (t))$ (scaled in an appropriate way), where $\zeta (t)$ and $\mu(t)$ are the numbers of individuals at the origin and outside the origin at moment $t$ given $\zeta(t)>0$.
Keywords: critical Bellman–Harris branching process with two types of individuals, inhomogeneous branching random walk on the lattice of real line, limit theorems.
@article{TVP_2004_49_3_a2,
     author = {V. A. Vatutin and V. A. Topchii},
     title = {Limit theorem for},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {461--484},
     year = {2004},
     volume = {49},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2004_49_3_a2/}
}
TY  - JOUR
AU  - V. A. Vatutin
AU  - V. A. Topchii
TI  - Limit theorem for
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2004
SP  - 461
EP  - 484
VL  - 49
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TVP_2004_49_3_a2/
LA  - ru
ID  - TVP_2004_49_3_a2
ER  - 
%0 Journal Article
%A V. A. Vatutin
%A V. A. Topchii
%T Limit theorem for
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2004
%P 461-484
%V 49
%N 3
%U http://geodesic.mathdoc.fr/item/TVP_2004_49_3_a2/
%G ru
%F TVP_2004_49_3_a2
V. A. Vatutin; V. A. Topchii. Limit theorem for. Teoriâ veroâtnostej i ee primeneniâ, Tome 49 (2004) no. 3, pp. 461-484. http://geodesic.mathdoc.fr/item/TVP_2004_49_3_a2/

[1] Topchii V. A., Vatutin V. A., Yarovaya E. B., “Catalytic branching random walk and queueing systems with random number of independent servers”, Theory Probab. Math. Statist., 69 (2003), 158–172

[2] Topchii V. A., Vatutin V. A., “Individuals at the origin in the critical catalytic branching random walk”, Discrete Math. Theoret. Comput. Sci. (electronic), 6 (2003), 325–332 http://dmtcs.loria.fr/proceedings/html/dmAC0130.abs.html | MR

[3] Vatutin V. A., “Kriticheskie vetvyaschiesya protsessy Bellmana–Kharrisa, nachinayuschiesya s bolshogo chisla chastits”, Matem. zametki, 40:4 (1986), 527–541 | MR

[4] Albeverio S., Bogachev L. V., “Branching random walk in a catalytic medium. I: Basic equations”, Positivity, 4:1 (2000), 41–100 | DOI | MR | Zbl

[5] Albeverio S., Bogachev L. V., Yarovaya E. B., “Asymptotics of branching symmetric random walk on the lattice with a single source”, C. R. Acad. Sci. Paris, 326:8 (1998), 975–980 ; Corrections: ibid. 327:6, 585 | MR | Zbl | MR

[6] Bogachev L. V., Yarovaya E. B., “Predelnaya teorema dlya nadkriticheskogo vetvyaschegosya sluchainogo bluzhdaniya na $\mathbb Z^d$ s odnim istochnikom”, Uspekhi matem. nauk, 53:5 (1998), 229–230 | MR | Zbl

[7] Bogachev L. V., Yarovaya E. B., “Momentnyi analiz vetvyaschegosya sluchainogo bluzhdaniya na reshetke s odnim istochnikom”, Dokl. RAN, 363:4 (1998), 439–442 | MR | Zbl

[8] Fleischmann K., “Superprocesses in catalytic media Measure-valued Processes”, Stochastic Partial Differential Equations, and Interacting Systems (Montréal, 1992), CRM Proc. Lecture Notes, 5, eds. D. A. Dawson et al., Amer. Math. Soc., Providence, RI, 1994, 99–110 | MR | Zbl

[9] Fleischmann K., Le Gall J.-F., “A new approach to the single point catalytic super-Brownian motion”, Probab. Theory Related Fields, 102:1 (1995), 63–82 | DOI | MR | Zbl

[10] Sevastyanov B. A., Vetvyaschiesya protsessy, Nauka, M., 1971, 436 pp. | MR

[11] Kharris T., Teoriya vetvyaschikhsya sluchainykh protsessov, Mir, M., 1966, 355 pp.

[12] Vatutin V. A., “Diskretnye predelnye raspredeleniya chisla chastits v vetvyaschikhsya protsessakh Bellmana–Kharrisa s neskolkimi tipami chastits”, Teoriya veroyatn. i ee primen., 24:3 (1979), 503–514 | MR | Zbl

[13] Vatutin V., Xiong J., “Some limit theorems for a particle system of single point catalytic branching random walks”, Acta Mathematica Sinica (to appear)