Limit theorem for
Teoriâ veroâtnostej i ee primeneniâ, Tome 49 (2004) no. 3, pp. 461-484

Voir la notice de l'article provenant de la source Math-Net.Ru

A continuous time branching random walk on the lattice $Z$ is considered in which individuals may produce children at the origin only. Assuming that the underlying Markov random walk is homogeneous and symmetric and the offspring reproduction law is critical, we describe the asymptotic behavior as $t\to\infty$ of the conditional distribution of the two-dimensional vector $(\zeta(t), \mu (t))$ (scaled in an appropriate way), where $\zeta (t)$ and $\mu(t)$ are the numbers of individuals at the origin and outside the origin at moment $t$ given $\zeta(t)>0$.
Keywords: critical Bellman–Harris branching process with two types of individuals, inhomogeneous branching random walk on the lattice of real line, limit theorems.
@article{TVP_2004_49_3_a2,
     author = {V. A. Vatutin and V. A. Topchii},
     title = {Limit theorem for},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {461--484},
     publisher = {mathdoc},
     volume = {49},
     number = {3},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2004_49_3_a2/}
}
TY  - JOUR
AU  - V. A. Vatutin
AU  - V. A. Topchii
TI  - Limit theorem for
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2004
SP  - 461
EP  - 484
VL  - 49
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_2004_49_3_a2/
LA  - ru
ID  - TVP_2004_49_3_a2
ER  - 
%0 Journal Article
%A V. A. Vatutin
%A V. A. Topchii
%T Limit theorem for
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2004
%P 461-484
%V 49
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_2004_49_3_a2/
%G ru
%F TVP_2004_49_3_a2
V. A. Vatutin; V. A. Topchii. Limit theorem for. Teoriâ veroâtnostej i ee primeneniâ, Tome 49 (2004) no. 3, pp. 461-484. http://geodesic.mathdoc.fr/item/TVP_2004_49_3_a2/