$d$-dimensional pressureless
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 49 (2004) no. 3, pp. 610-614
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Let $x\in R^d\to u(x,0)$ be a continuous bounded function
and $\rho(dx,0)$ a probability measure
on $R^d$. For all random variables
$X_0$ with probability distribution
$\rho(dx,0)$,
we show that the
stochastic differential equation (SDE)
$$
X_t = X_0 + \int_0^t E\big[u(X_0,0)\,|\, X_s\big]\,ds,\qquad t\ge 0,
$$
has a solution which is a $\sigma(X_0)$-measurable
Markov process.
We derive a weak solution for the pressureless gas equation for $d \ge 1$,
with initial distribution of masses $\rho(dx,0)$ and initial
velocity $u(\cdot,0)$.
We show for $d = 1$
the existence of a unique Markov process
$(X_t)$ solution of our SDE.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
pressureless gas equations
Mots-clés : variational principles.
                    
                  
                
                
                Mots-clés : variational principles.
@article{TVP_2004_49_3_a11,
     author = {A. Dermoune},
     title = {$d$-dimensional pressureless},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {610--614},
     publisher = {mathdoc},
     volume = {49},
     number = {3},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TVP_2004_49_3_a11/}
}
                      
                      
                    A. Dermoune. $d$-dimensional pressureless. Teoriâ veroâtnostej i ee primeneniâ, Tome 49 (2004) no. 3, pp. 610-614. http://geodesic.mathdoc.fr/item/TVP_2004_49_3_a11/
