$d$-dimensional pressureless
Teoriâ veroâtnostej i ee primeneniâ, Tome 49 (2004) no. 3, pp. 610-614
Cet article a éte moissonné depuis la source Math-Net.Ru
Let $x\in R^d\to u(x,0)$ be a continuous bounded function and $\rho(dx,0)$ a probability measure on $R^d$. For all random variables $X_0$ with probability distribution $\rho(dx,0)$, we show that the stochastic differential equation (SDE) $$ X_t = X_0 + \int_0^t E\big[u(X_0,0)\,|\, X_s\big]\,ds,\qquad t\ge 0, $$ has a solution which is a $\sigma(X_0)$-measurable Markov process. We derive a weak solution for the pressureless gas equation for $d \ge 1$, with initial distribution of masses $\rho(dx,0)$ and initial velocity $u(\cdot,0)$. We show for $d = 1$ the existence of a unique Markov process $(X_t)$ solution of our SDE.
Keywords:
pressureless gas equations
Mots-clés : variational principles.
Mots-clés : variational principles.
@article{TVP_2004_49_3_a11,
author = {A. Dermoune},
title = {$d$-dimensional pressureless},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {610--614},
year = {2004},
volume = {49},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TVP_2004_49_3_a11/}
}
A. Dermoune. $d$-dimensional pressureless. Teoriâ veroâtnostej i ee primeneniâ, Tome 49 (2004) no. 3, pp. 610-614. http://geodesic.mathdoc.fr/item/TVP_2004_49_3_a11/
[1] Dermoune A., “Probabilistic interpretation of sticky particle model”, Ann. Probab., 27:3 (1999), 1357–1367 | DOI | MR | Zbl
[2] Dermoune A., Djehiche B., Probabilistic family of solutions of pressureless gas equation, Preprint v. 55, Révue I.R.M.A. de Lille, 2001 | MR
[3] E. Weinan, Rykov Y., Sinai Y., “Generalized variational principles, global weak solutions and behavior with random initial data for systems of conservation laws arising in adhesion particle dynamics”, Comm. Math. Phys., 177:2 (1996), 349–380 | DOI | MR | Zbl