@article{TVP_2004_49_3_a1,
author = {M. V. Boldin and W. Stute},
title = {On sign tests in {ARMA} models with possibly infinite},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {436--460},
year = {2004},
volume = {49},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2004_49_3_a1/}
}
M. V. Boldin; W. Stute. On sign tests in ARMA models with possibly infinite. Teoriâ veroâtnostej i ee primeneniâ, Tome 49 (2004) no. 3, pp. 436-460. http://geodesic.mathdoc.fr/item/TVP_2004_49_3_a1/
[1] Anderson T. W., The Statistical Analysis of Time Series, Wiley, New York, 1971, 704 pp. | MR | Zbl
[2] Bloomfield P., Steiger W. L., Least Absolute Deviation. Theory, Applications and Algorithms, Birkhäuser, Boston, 1983, 349 pp. | MR | Zbl
[3] Boldin M. V., Simonova G. I., Tyurin Yu. N., Sign-based Methods in Linear Statistical Models, Amer. Math. Society, Providence, RI, 1997, 234 pp. | MR | Zbl
[4] Brockwell P. J., Davis R. A., Time Series: Theory and Methods, Springer-Verlag, New York, 1987, 519 pp. | MR | Zbl
[5] Davis R. A., and Resnick S. I., “Limit theory for the sample covariance and correlation functions of moving averages”, Ann. Statist., 14:2 (1986), 533–558 | DOI | MR | Zbl
[6] Dufour J. M., “Rank tests for serial dependence”, J. Time Ser. Anal., 2:3 (1981), 117–128 | DOI | MR | Zbl
[7] Dufour J. M., Hallin M., Mizera I., “Generalized runs tests for heteroscedastic time series”, J. Nonparametric Statist., 9:1 (1998), 39–86 | DOI | MR | Zbl
[8] Hájek J., Šidák Z., Theory of Rank Tests, Academic Press, New York, 1967, 297 pp. | MR
[9] Hallin M., Ingenbleek J.-F., Puri M. L., “Linear serial rank tests for randomness against ARMA alternatives”, Ann. Statist., 13:3 (1985), 1156–1181 | DOI | MR | Zbl
[10] Hallin J., Ingenbleek J.-F., Puri M. L., “Linear and quadratic rank tests for randomness against serial dependence”, J. Time Ser. Anal., 8:4 (1987), 409–424 | DOI | MR | Zbl
[11] Hallin M., Puri M. L., “Optimal rank-based procedures for time series analysis: testing an ARMA model against other ARMA models”, Ann. Statist., 16:1 (1988), 402–432 | DOI | MR | Zbl
[12] Hallin M., Puri M. L., “Time series analysis via rank order theory: signed-rank tests for ARMA models”, J. Multivariate Analysis, 39:1 (1991), 1–29 | DOI | MR | Zbl
[13] Hallin M., Puri M. L., “Rank tests for time-series analysis: a survey”, New Directions in Time Series Analysis, Part I, eds. D. Brillinger, E. Parzen, and M. Rosenblatt, Springer, New York, 1992, 111–153 | MR
[14] Hallin M., Puri M. L., “Aligned rank tests for linear models with autocorrelated error terms”, J. Multivariate Anal., 50:2 (1994), 175–237 | DOI | MR | Zbl
[15] Hannan E. J., Kanter M., “Autoregressive processes with infinite variance”, J. Appl. Probab., 14:2 (1977), 411–415 | DOI | MR | Zbl
[16] Kanter M., Steiger W. L., “Regression and autoregression with infinite variance”, Adv. Probab., 6 (1974), 768–783 | DOI | MR | Zbl
[17] Koul H. L., Weighted Empiricals and Linear Models, Institute of Mathematical Statistics, IMS, Hayward, 1992, 264 pp. | MR | Zbl
[18] Kreiss J. P., “On adaptive estimation in stationary ARMA processes”, Ann. Statist., 15:1 (1987), 112–133 | DOI | MR | Zbl
[19] Kreiss J. P., “Testing linear hypotheses in autoregressions”, Ann. Statist., 18:3 (1990), 1470–1482 | DOI | MR | Zbl
[20] Le Cam L., Asymptotic Methods in Statistical Decision Theory, Springer-Verlag, New York, 1986, 742 pp. | MR
[21] Mikosch T., Gadrich T., Klüppelberg C., Adler R. J., “Parametric estimation for ARMA models with infinite variance innovations”, Ann. Statist., 23:1 (1995), 305–326 | DOI | MR | Zbl
[22] Pollard D., “Asymptotics for least absolute deviation regression estimators”, Econometric Theory, 7:2 (1991), 186–199 | DOI | MR
[23] Strasser H., Mathematical Theory of Statistics, de Gruyter, Berlin, 1985, 492 pp. | MR | Zbl
[24] Yohai V. J., Maronna R. A., “Asymptotic behavior of least-squares estimates for autoregressive processes with infinite variances”, Ann. Statist., 5 (1977), 554–560 | DOI | MR | Zbl