@article{TVP_2004_49_2_a9,
author = {S. Yu. Novak},
title = {On self-normalized sums and {Student's} statistic},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {365--373},
year = {2004},
volume = {49},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2004_49_2_a9/}
}
S. Yu. Novak. On self-normalized sums and Student's statistic. Teoriâ veroâtnostej i ee primeneniâ, Tome 49 (2004) no. 2, pp. 365-373. http://geodesic.mathdoc.fr/item/TVP_2004_49_2_a9/
[1] von Bahr B., Esseen C.-G., “Inequalities for the $r$-th absolute moment of a sum of random variables $1\le r\le 2$”, Ann. Math. Statist., 36:1 (1965), 299–303 | DOI | MR | Zbl
[2] Bentkus V., “On the asymptotical behavior of the constant in the Berry–Esseen inequality”, J. Theoret. Probab., 7:2 (1994), 211–224 | DOI | MR | Zbl
[3] Bentkus V., Götze F., “The Berry–Esseen bound for Student's statistic”, Ann. Probab., 24:1 (1996), 491–503 | DOI | MR | Zbl
[4] Bentkus V., Götze F., van Zwet W. R., “An Edgeworth expansion for symmetric statistics”, Ann. Statist., 25:2 (1997), 851–896 | DOI | MR | Zbl
[5] Berry A. C., “The accuracy of the Gaussian approximation to the sum of independent variates”, Trans. Amer. Math. Soc., 49:1 (1941), 122–136 | DOI | MR
[6] Bolthausen E., “An estimate of the remainder in a combinatorial central limit theorem”, Z. Wahrscheinlichkeitstheor. verw. Geb., 66:3 (1984), 379–386 | DOI | MR | Zbl
[7] Chibisov D. M., “Asimptoticheskoe razlozhenie dlya raspredeleniya statistiki, dopuskayuschei stokhasticheskoe razlozhenie. I”, Teoriya veroyatn. i ee primen., 25:4 (1980), 745–756 | MR
[8] Chibisov D. M., “Asimptoticheskie pazlozheniya v zadachakh ppovepki gipotez. I”, Izv. AH UzSSR, sep. fiz.-matem. nauk, 5, 18–26 | Zbl
[9] Chung K.-L., “The approximate distribution of Student's statistic”, Ann. Math. Statist., 17 (1946), 447–465 | DOI | MR | Zbl
[10] Efron B., “Student's $t$-test under symmetry conditions”, J. Amer. Statist. Assoc., 64 (1969), 1278–1302 | DOI | MR | Zbl
[11] Esseen C.-G., “On the Liapounoff limit of error in the theory of probability”, Ark. Mat. Astr. Fys., 28A:9 (1942), 1–19 | MR
[12] Esseen C.-G., “Fourier analysis of distribution functions. A mathematical study of the Laplace–Gaussian law”, Acta Math., 77 (1945), 1–125 | DOI | MR | Zbl
[13] Fisher R. A., “Applications of Student's distribution”, Metron, 5 (1925), 90–104 | Zbl
[14] Giné E., Götze F., Mason D. M., “When is the Student $t$-statistic asymptotically standard normal?”, Ann. Probab., 25:3 (1997), 1514–1531 | DOI | MR | Zbl
[15] Hall P., “Edgeworth expansion for Student's $t$-statistic under minimal moment conditions”, Ann. Probab., 15:3 (1987), 920–931 | DOI | MR | Zbl
[16] Liapunov A. M., “Nouvelle forme du théorème sur la limite des probabilités”, Mem. Acad. Imp. Sci. St.-Peterburg, 12 (1901), 1–24
[17] Nagaev S. V., The Berry–Esseen bound for the self-normalized sums, Preprint No 82, Institut matematiki SO RAN, Novosibirsk, 2001; Siberian Adv. Math., 12:3 (2002), 79–125 | MR | Zbl
[18] Novak S. Yu., “O pasppedelenii otnosheniya summ sluchainykh velichin”, Teopiya vepoyatn. i ee ppimen., 41:3 (1996), 533–560 | MR | Zbl
[19] Novak S. Y., “On self-normalized sums”, Math. Methods Statist., 9:4 (2000), 415–436 | MR | Zbl
[20] Novak S. Y., “On self-normalized sums. Supplement”, Math. Methods Statist., 11:2 (2002), 256–258 | MR | Zbl
[21] Paditz L., “On the analytical structure of the constant in the nonuniform version of the Esseen inequality”, Statistics, 20:3 (1989), 453–464 | DOI | MR | Zbl
[22] Shao Q.-M., “Self-normalized large deviations”, Ann. Probab., 25:1 (1997), 285–328 | DOI | MR | Zbl
[23] Slavova V. V., “On the Berry–Esseen bound for Student's statistic”, Lecture Notes in Math., 1155, 1985, 335–390 | MR
[24] Shiganov I. S., “Utochnenie verkhnei granitsy konstanty v ostatochnom chlene tsentralnoe predelnoi teoremy”, Problemy ustoichivosti stokhasticheskikh modelei, VNIISI, M., 1982, 109–115 | MR
[25] Stein C., Approximate computation of expectations, Institute of Mathematical Statistics, Hayward, 1986, 164 pp. | MR
[26] Wang Q., Jing B.-Y., “An exponential nonuniform Berry–Esseen bound for self-normalized sums”, Ann. Probab., 27:4 (1999), 2068–2088 | DOI | MR | Zbl
[27] Novak S. Y., On self-normalised sums and Student's statistic, Technical Report TR/18/01, Brunel University of West London, 2001
[28] Egorov V. A., “Ob asimptoticheskom povedenii samonormirovannykh summ sluchainykh velichin”, Teopiya vepoyatn. i ee ppimen., 41:3 (1996), 643–650 | MR | Zbl
[29] Chistyakov G. P., “Novoe asimptoticheskoe razlozhenie i asimptoticheski nailuchshie postoyannye v teoreme Lyapunova. I”, Teopiya vepoyatn. i ee ppimen., 46:2 (2001), 326–344 | MR | Zbl
[30] Bloznelis M., Putter H., “Second order and bootstrap approximation to Student's $t$-statistic”, Teopiya vepoyatn. i ee ppimen., 47:2 (2002), 374–381 | MR | Zbl