On recovery of a measure from its symmetrization
Teoriâ veroâtnostej i ee primeneniâ, Tome 49 (2004) no. 2, pp. 352-362 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We show that a $\sigma$-finite Borel measure, which is defined on the positive half-line and has a nonincreasing density (with respect to the Lebesgue measure) is uniquely characterized by its symmetrization.
Keywords: symmetrization, phase retrieval, factorization theorems, moving average process.
Mots-clés : Fourier transform
@article{TVP_2004_49_2_a7,
     author = {A. A. Gushchin and U. K\"uchler},
     title = {On recovery of a measure from its symmetrization},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {352--362},
     year = {2004},
     volume = {49},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2004_49_2_a7/}
}
TY  - JOUR
AU  - A. A. Gushchin
AU  - U. Küchler
TI  - On recovery of a measure from its symmetrization
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2004
SP  - 352
EP  - 362
VL  - 49
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TVP_2004_49_2_a7/
LA  - ru
ID  - TVP_2004_49_2_a7
ER  - 
%0 Journal Article
%A A. A. Gushchin
%A U. Küchler
%T On recovery of a measure from its symmetrization
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2004
%P 352-362
%V 49
%N 2
%U http://geodesic.mathdoc.fr/item/TVP_2004_49_2_a7/
%G ru
%F TVP_2004_49_2_a7
A. A. Gushchin; U. Küchler. On recovery of a measure from its symmetrization. Teoriâ veroâtnostej i ee primeneniâ, Tome 49 (2004) no. 2, pp. 352-362. http://geodesic.mathdoc.fr/item/TVP_2004_49_2_a7/

[1] Akutowicz E. J., “On the determination of the phase of a Fourier integral. I”, Trans. Amer. Math. Soc., 83:1 (1956), 179–192 | DOI | MR | Zbl

[2] Akutowicz E. J., “On the determination of the phase of a Fourier integral. II”, Proc. Amer. Math. Soc., 8:1 (1957), 234–238 | DOI | MR | Zbl

[3] Bingham N. H., Goldie C. M., Teugels J. L., Regular Variation, Cambridge Univ. Press, Cambridge, 1989, 494 pp. | MR | Zbl

[4] Carnal H., Dozzi M., “On a decomposition problem for multivariate probability measures”, J. Multivariate Anal., 31:2 (1989), 165–177 | DOI | MR | Zbl

[5] Carnal H., Fel'dman G. M., “Phase retrieval for probability measures on Abelian groups”, J. Theoret. Probab., 8:3 (1995), 717–725 | DOI | MR | Zbl

[6] Carnal H., Fel'dman G. M., “Phase retrieval for probability measures on Abelian groups. II”, J. Theoret. Probab., 10:4 (1997), 1065–1074 | DOI | MR | Zbl

[7] Carnal H., Feldman G. M., “A stability property for probability measures on Abelian groups”, Statist. Probab. Lett., 49:1 (2000), 39–44 | DOI | MR | Zbl

[8] Cheridito P., “Gaussian moving averages, semimartingales and option pricing”, Stochastic Process. Appl., 109:1 (2004), 47–68 | DOI | MR | Zbl

[9] Cherny A. S., When is a moving average a semimartingale?, Research Report No 2001-28, MaPhySto, Aarhus, 2001

[10] Ehm W., Gneiting T., Richards D., Convolution roots of radial positive definite functions with compact support, Technical Report No 428, Department of Statistics, University of Washington, Washington, 2003 ; Trans. Amer. Math. Soc. (to appear) | MR

[11] Feller V., Vvedenie v teoriyu veroyatnostei i ee prilozheniya, v. 2, Mir, M., 1984, 752 pp. | MR

[12] Gofman K., Banakhovy prostranstva analiticheskikh funktsii, IL, M., 1963, 312 pp.

[13] Hofstetter E. M., “Construction of time-limited functions with specified autocorrelation functions”, IEEE Trans. Inform. Theory, IT-10:2 (1964), 119–126 | DOI

[14] Krylov V. I., “O funktsiyakh, regulyarnykh v poluploskosti”, Matem. sb., 6:1 (1939), 95–138

[15] Linnik Yu. V., Ostrovskii I. V., Razlozheniya sluchainykh velichin i vektorov, Nauka, M., 1972, 479 pp. | MR

[16] Masani P., “On helixes in Hilbert space. I”, Teoriya veroyatn. i ee primen., 17:1 (1972), 3–20 | MR | Zbl

[17] Rosenblatt J., “Phase retrieval”, Comm. Math. Phys., 95:3 (1984), 317–343 | DOI | MR | Zbl

[18] Rosenblatt J., “Determining a distribution from the modulus of its Fourier transform”, Complex Variables Theory Appl., 10:4 (1988), 319–326 | MR | Zbl

[19] Rossberg H.-J., Jesiak B., Siegel G., Analytic Methods of Probability Theory, Akademie-Verlag, Berlin, 1985, 311 pp. | MR | Zbl

[20] Samorodnitsky G., Taqqu M. S., Stable Non-Gaussian Random Processes, Chapman Hall, New York, 1994, 632 pp. | MR

[21] Seiffert I., Riedel M., “Uniqueness of two factorization problems”, Teoriya veroyatn. i ee primen., 24:1 (1979), 207–211 | MR

[22] Smirnoff V., “Sur les valeurs limites des fonctions régulières à l'intérieur d'un cercle”, Zhurn. Leningrad. fiz.-matem. ob-va, 2:2 (1928), 22–37 | MR

[23] Walther A., “The question of phase retrieval in optics”, Optica Acta, 10 (1963), 41–49 | MR