Asymptotic estimation of a shift parameter of a quantum state
Teoriâ veroâtnostej i ee primeneniâ, Tome 49 (2004) no. 2, pp. 335-350 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The asymptotics of the optimal covariant estimate of a shift parameter of a pure quantum state is studied. In the regular case, where the variance of the generator of the shift group is finite, this problem of quantum statistics turns out to be connected with the information-theoretic approach to the classical central limit theorem proposed by Linnik in 1959. We also consider the quantum analogue of estimation of the shift parameter of the uniform distribution in which the regularity assumption is violated. The advantage of using entanglement is demonstrated in the class of covariant estimates.
Keywords: quantum estimation theory, covariant estimates, shift parameter
Mots-clés : entanglement.
@article{TVP_2004_49_2_a5,
     author = {A. S. Holevo},
     title = {Asymptotic estimation of a shift parameter of a quantum state},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {335--350},
     year = {2004},
     volume = {49},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2004_49_2_a5/}
}
TY  - JOUR
AU  - A. S. Holevo
TI  - Asymptotic estimation of a shift parameter of a quantum state
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2004
SP  - 335
EP  - 350
VL  - 49
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TVP_2004_49_2_a5/
LA  - ru
ID  - TVP_2004_49_2_a5
ER  - 
%0 Journal Article
%A A. S. Holevo
%T Asymptotic estimation of a shift parameter of a quantum state
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2004
%P 335-350
%V 49
%N 2
%U http://geodesic.mathdoc.fr/item/TVP_2004_49_2_a5/
%G ru
%F TVP_2004_49_2_a5
A. S. Holevo. Asymptotic estimation of a shift parameter of a quantum state. Teoriâ veroâtnostej i ee primeneniâ, Tome 49 (2004) no. 2, pp. 335-350. http://geodesic.mathdoc.fr/item/TVP_2004_49_2_a5/

[1] Khelstrom K. U., Kvantovaya teoriya proverki gipotez i otsenivaniya, Mir, M., 1979, 344 pp.

[2] Kholevo A. S., Veroyatnostnye i statisticheskie aspekty kvantovoi teorii, 2-e izd., IKI, Moskva, Izhevsk, 2003, 404 pp.

[3] Gill R. D., Massar S., “State estimation for large ensembles”, Phys. Rev. A, 61 (2000), 042312, 16 pp., arXiv: — LANL e-print quant-ph/9902063 | DOI

[4] Barndorff-Nielsen O. E., Gill R. D., Jupp P. E., “On quantum statistical inference”, J. Roy. Statist. Soc. B, 65:4 (2003), 775–816 | DOI | MR | Zbl

[5] Keyl M., Werner R. F., “Estimating the spectrum of a density operator”, Phys. Rev. A (3), 64:5 (2001), 052311 | DOI | MR

[6] Hayashi M., “Asymptotic estimation theory for a finite-dimensional pure state model”, J. Phys. A, 31:20 (1998), 4633–4655 | DOI | MR | Zbl

[7] Hayashi M., “Two quantum analogues of Fisher information from a large deviation viewpoint of quantum estimation”, J. Phys. A, 35:36 (2002), 7689–7727 | DOI | MR | Zbl

[8] Matsumoto K., “A new approach to the Cramér–Rao-type bound of the pure-state model”, J. Phys. A, 35:13 (2002), 3111–3123 | DOI | MR | Zbl

[9] Kholevo A. S., Statisticheskaya struktura kvantovoi teorii, IKI, Moskva, Izhevsk, 2003, 192 pp.

[10] Rukhin A. L., “Nekotorye statisticheskie i veroyatnostnye zadachi na gruppakh”, Trudy MIAN, 111, 1970, 52–109 | Zbl

[11] Linnik Yu. V., “Teoretiko-informatsionnoe dokazatelstvo tsentralnoi predelnoi teoremy v usloviyakh Lindeberga”, Teoriya veroyatn. i ee primen., 4:3 (1959), 311–320 | MR

[12] Johnson O., Suhov Yu. M., “Entropy and random vectors”, J. Statist. Phys., 104 (2001), 147–167 | DOI | MR

[13] Johnson O., Barron A., Fisher information inequalities and the central limit theorem, arXiv: — LANL e-reprint math/0111020 | MR

[14] Holevo A. S., “Bounds for generalized uncertainty of shift parameter”, Lecture Notes in Math., 1021, 1983, 243–251 | MR | Zbl

[15] Kholevo A. S., “Obobschennye sistemy imprimitivnosti dlya abelevykh grupp”, Izv. vuzov, ser. matem., 1983, no. 2, 49–71 | MR | Zbl

[16] Prokhorov Yu. V., “Lokalnaya teorema dlya plotnostei”, Dokl. AN SSSR, 83:6 (1952), 797–800

[17] Kramer G., Matematicheskie metody statistiki, Mir, M., 1975, 648 pp. | MR