On the Martingale Measures in Exponential Lévy Models
Teoriâ veroâtnostej i ee primeneniâ, Tome 49 (2004) no. 2, pp. 317-334 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study the existence and uniqueness of martingale measures in the exponential Lévy models of the form $S_t=e^{X_t}$, $S_t=e^{X_{\tau_t}}$, where $X$ is a Lévy process and $\tau$ is an independent increasing process.
Keywords: fundamental theorem of asset pricing, exponential Lйvy model, martingale measure, sigma-martingale measure, uniformly integrable martingale measure.
@article{TVP_2004_49_2_a4,
     author = {A. V. Selivanov},
     title = {On the {Martingale} {Measures} in {Exponential} {L\'evy} {Models}},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {317--334},
     year = {2004},
     volume = {49},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2004_49_2_a4/}
}
TY  - JOUR
AU  - A. V. Selivanov
TI  - On the Martingale Measures in Exponential Lévy Models
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2004
SP  - 317
EP  - 334
VL  - 49
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TVP_2004_49_2_a4/
LA  - ru
ID  - TVP_2004_49_2_a4
ER  - 
%0 Journal Article
%A A. V. Selivanov
%T On the Martingale Measures in Exponential Lévy Models
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2004
%P 317-334
%V 49
%N 2
%U http://geodesic.mathdoc.fr/item/TVP_2004_49_2_a4/
%G ru
%F TVP_2004_49_2_a4
A. V. Selivanov. On the Martingale Measures in Exponential Lévy Models. Teoriâ veroâtnostej i ee primeneniâ, Tome 49 (2004) no. 2, pp. 317-334. http://geodesic.mathdoc.fr/item/TVP_2004_49_2_a4/

[1] Ansel J.-P., Stricker C., “Couverture des actifs contingents et prix maximum”, Ann. Inst. H. Poincaré, 30:2 (1994), 303–315 | MR | Zbl

[2] Barndorff-Nielsen O. E., Shephard N., “Modelling by Lévy processes for financial econometrics”, Lévy Processes. Theory and Applications, eds. O. E. Barndorff-Nielsen et al., Birkhäuser, Boston, 2001, 283–318 | MR | Zbl

[3] Carr P.. Geman H., Madan D., Yor M., “Stochastic volatility for Lévy processes”, Math. Finance, 13:3 (2003), 345–382 | DOI | MR | Zbl

[4] Chernyi A. S., “Semeistva soglasovannykh veroyatnostnykh mer”, Teoriya veroyatn. i ee primen., 46:1 (2001), 160–163 | MR | Zbl

[5] Delbaen F., Schachermayer W., “A general version of the fundamental theorem of asset pricing”, Math. Ann., 300:3 (1994), 463–520 | DOI | MR | Zbl

[6] Delbaen F., Schachermayer W., “The fundamental theorem of asset pricing for unbounded stochastic processes”, Math. Ann., 312:2 (1998), 215–250 | DOI | MR | Zbl

[7] Goll T., Kallsen J., “A complete explicit solution to the log-optimal portfolio problem”, Ann. Appl. Probab., 13:2 (2003), 774–799 | DOI | MR | Zbl

[8] Jacod J., Shiryaev A. N., Limit Theorems for Stochastic Processes, Springer-Verlag, Berlin, 2003, 661 pp. | MR

[9] Jakubėnas P., “On option pricing in certain incomplete markets”, Trudy MIAN, 237, 2002, 123–142 | MR | Zbl

[10] Sato K.-I., Lévy Processes and Infinitely Divisible Distributions, Cambridge Univ. Press, Cambridge, 1999, 486 pp. | MR

[11] Shiryaev A. N., Osnovy stokhasticheskoi finansovoi matematiki, v. 2, Fazis, M., 1998, 544 pp.

[12] Shiryaev A. N., Veroyatnost, Nauka, M., 2004, 927 pp.

[13] Shiryaev A. N., Chernyi A. S., “Vektornyi stokhasticheskii integral i fundamentalnye teoremy teorii arbitrazha”, Trudy MIAN, 237, 2002, 12–56 | MR | Zbl

[14] Sin C. A., Strictly local martingales and hedge ratios on stochastic volatility models, Ph. D. Dissertation, Cornell University, Graduate School, Ithaka, NY, 1996

[15] Stroock D. W., Probability Theory. An Analytic View, Cambridge Univ. Press, Cambridge, 2000, 536 pp. | MR | Zbl