A Lyapunov-type bound in $R^d$
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 49 (2004) no. 2, pp. 400-410
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Let $\fs X1n$ be independent random vectors taking values in $R^d$
such that ${E X_k =0}$ for all $k$.
Write ${S=\fsu X1n}$.
Assume that the covariance operator, say $C^2$,
of $S$ is invertible. Let $Z$ be a centered Gaussian random vector such
that covariances of $S$ and $Z$ are equal.
Let $\mathscr{C}$
stand for  the class of all convex subsets of $R^d$.
We prove a Lyapunov-type bound for
$\Delta =\sup_{A\in\mathscr{C}}|P\{S\in A\}-P\{Z\in A\}|$.
Namely,
${\Delta \le c d^{1/4} \beta}$ with ${\beta =\fsu \beta 1n}$ and
${\beta_k= E |C^{-1}X_k|^3}$, where $c$ is an absolute constant.
If the random variables ${\fs X1n}$ are
independent and identically distributed and $X_k$ has
identity covariance, then the bound specifies to
${\Delta \le c d^{1/4} E |X_1|^3/\sqrt{n}}$.
Whether one can remove the factor
$d^{1/4}$ or replace it with a better one (eventually by $1$),
remains an open question.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
multidimensional, central limit theorem, Berry–Esseen bound, Lyapunov, dependence on dimension, nonidentically distributed.
                    
                    
                    
                  
                
                
                @article{TVP_2004_49_2_a13,
     author = {V. Yu. Bentkus},
     title = {A {Lyapunov-type} bound in $R^d$},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {400--410},
     publisher = {mathdoc},
     volume = {49},
     number = {2},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TVP_2004_49_2_a13/}
}
                      
                      
                    V. Yu. Bentkus. A Lyapunov-type bound in $R^d$. Teoriâ veroâtnostej i ee primeneniâ, Tome 49 (2004) no. 2, pp. 400-410. http://geodesic.mathdoc.fr/item/TVP_2004_49_2_a13/
