A Lyapunov-type bound in $R^d$
Teoriâ veroâtnostej i ee primeneniâ, Tome 49 (2004) no. 2, pp. 400-410

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\fs X1n$ be independent random vectors taking values in $R^d$ such that ${E X_k =0}$ for all $k$. Write ${S=\fsu X1n}$. Assume that the covariance operator, say $C^2$, of $S$ is invertible. Let $Z$ be a centered Gaussian random vector such that covariances of $S$ and $Z$ are equal. Let $\mathscr{C}$ stand for the class of all convex subsets of $R^d$. We prove a Lyapunov-type bound for $\Delta =\sup_{A\in\mathscr{C}}|P\{S\in A\}-P\{Z\in A\}|$. Namely, ${\Delta \le c d^{1/4} \beta}$ with ${\beta =\fsu \beta 1n}$ and ${\beta_k= E |C^{-1}X_k|^3}$, where $c$ is an absolute constant. If the random variables ${\fs X1n}$ are independent and identically distributed and $X_k$ has identity covariance, then the bound specifies to ${\Delta \le c d^{1/4} E |X_1|^3/\sqrt{n}}$. Whether one can remove the factor $d^{1/4}$ or replace it with a better one (eventually by $1$), remains an open question.
Keywords: multidimensional, central limit theorem, Berry–Esseen bound, Lyapunov, dependence on dimension, nonidentically distributed.
@article{TVP_2004_49_2_a13,
     author = {V. Yu. Bentkus},
     title = {A {Lyapunov-type} bound in $R^d$},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {400--410},
     publisher = {mathdoc},
     volume = {49},
     number = {2},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TVP_2004_49_2_a13/}
}
TY  - JOUR
AU  - V. Yu. Bentkus
TI  - A Lyapunov-type bound in $R^d$
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2004
SP  - 400
EP  - 410
VL  - 49
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_2004_49_2_a13/
LA  - en
ID  - TVP_2004_49_2_a13
ER  - 
%0 Journal Article
%A V. Yu. Bentkus
%T A Lyapunov-type bound in $R^d$
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2004
%P 400-410
%V 49
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_2004_49_2_a13/
%G en
%F TVP_2004_49_2_a13
V. Yu. Bentkus. A Lyapunov-type bound in $R^d$. Teoriâ veroâtnostej i ee primeneniâ, Tome 49 (2004) no. 2, pp. 400-410. http://geodesic.mathdoc.fr/item/TVP_2004_49_2_a13/