Asymptotically $d$-optimal
Teoriâ veroâtnostej i ee primeneniâ, Tome 49 (2004) no. 2, pp. 396-399 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the problem of a posteriori change-point detection for a sequence of independent identically distributed random variables. We propose to use $d$-risks instead of error of the first type and error of the second type. We construct an asymptotically optimal test minimizing one $d$-risk and guaranteeing another.
Keywords: change-point detection, hypothesis discrimination, close hypothesis, $d$-a posteriori approach, $d$-optimality, weak convergence, Wiener process functional.
@article{TVP_2004_49_2_a12,
     author = {G. Yu. Sofronov},
     title = {Asymptotically $d$-optimal},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {396--399},
     year = {2004},
     volume = {49},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2004_49_2_a12/}
}
TY  - JOUR
AU  - G. Yu. Sofronov
TI  - Asymptotically $d$-optimal
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2004
SP  - 396
EP  - 399
VL  - 49
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TVP_2004_49_2_a12/
LA  - ru
ID  - TVP_2004_49_2_a12
ER  - 
%0 Journal Article
%A G. Yu. Sofronov
%T Asymptotically $d$-optimal
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2004
%P 396-399
%V 49
%N 2
%U http://geodesic.mathdoc.fr/item/TVP_2004_49_2_a12/
%G ru
%F TVP_2004_49_2_a12
G. Yu. Sofronov. Asymptotically $d$-optimal. Teoriâ veroâtnostej i ee primeneniâ, Tome 49 (2004) no. 2, pp. 396-399. http://geodesic.mathdoc.fr/item/TVP_2004_49_2_a12/

[1] Kolmogorov A. N., Prokhorov Yu. V., Shiryaev A. N., “Veroyatnostno-statisticheskie metody obnaruzheniya spontanno voznikayuschikh effektov”, Trudy MIAN, 182, 1988, 4–23 | Zbl

[2] Sofronov G. Yu., “Asimptoticheski $d$-optimalnyi kriterii obnaruzheniya razladki”, Teoriya veroyatn. i ee primen., 46:3 (2001), 571–572 | MR | Zbl

[3] Volodin I. N., Novikov A. A., Simushkin S. V., “Garantiinyi statisticheskii kontrol kachestva: aposteriornyi podkhod”, Obozrenie prikl. i promyshl. matem., ser. veroyatn. i statist., 1:2 (1994), 148–178 | Zbl

[4] Simushkin S. V., “Empiricheskii $d$-aposteriornyi podkhod k probleme garantiinosti statisticheskogo vyvoda”, Izv. vuzov, ser. matem., 1983, no. 11, 42–58 | MR | Zbl

[5] Volodin I. N., Novikov A. A., “Asimptotika neobkhodimogo ob'ema vyborki pri $d$-garantiinom razlichenii dvukh gipotez”, Izv. vuzov, ser. matem., 1983, no. 11, 59–66 | MR | Zbl

[6] Volodin I. N., Novikov An. A., “Asimptotika neobkhodimogo ob'ema vyborki pri garantiinom razlichenii parametricheskikh gipotez”, Issledovaniya po prikladnoi matematike, 21, Izd-vo Kazanskogo un-ta, Kazan, 1999, 3–41

[7] Greenwood P. E., Shiryayev A. N., Contiguity and the Statistical Invariance Principle, Gordon Breach, New York, 1985, 236 pp. | MR | Zbl

[8] MacNeill I. B., “Tests for change of parameter at unknown times and distributions of some related functionals on Brownian motion”, Ann. Statist., 2:5 (1974), 950–962 | DOI | MR | Zbl