On transient phenomena in random walks
Teoriâ veroâtnostej i ee primeneniâ, Tome 49 (2004) no. 2, pp. 382-395

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\overline S_n=\max_{1\le k\le n}\sum_{i=1}^{k}X_{i,n}$, where for any $n=1,2,\dots$ the sequence $X_{1,n},\dots, X_{n,n}$ consists of independent and identically distributed random variables with finite positive variances. This paper studies the problem of obtaining simple and unimprovable sufficient conditions of the Lindeberg type which guarantee the convergence of the normalized variable $(\overline S_n-A_n)/B_n$ to a nondegenerate random variable when the constants $A_n$ and $B_n>0$ are chosen, respectively. The results that Prokhorov and Borovkov obtained are simplified, refined, and strengthened. In particular, an unexplored case of when $D X_{1,n}\to 0$ as $n\to\infty$ is considered in detail.
Keywords: triangular array, maximum of sequential sums, invariance principle, Prokhorov distance.
Mots-clés : uniform convergence of distributions, limit distributions
@article{TVP_2004_49_2_a11,
     author = {A. I. Sakhanenko},
     title = {On transient phenomena in random walks},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {382--395},
     publisher = {mathdoc},
     volume = {49},
     number = {2},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2004_49_2_a11/}
}
TY  - JOUR
AU  - A. I. Sakhanenko
TI  - On transient phenomena in random walks
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2004
SP  - 382
EP  - 395
VL  - 49
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_2004_49_2_a11/
LA  - ru
ID  - TVP_2004_49_2_a11
ER  - 
%0 Journal Article
%A A. I. Sakhanenko
%T On transient phenomena in random walks
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2004
%P 382-395
%V 49
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_2004_49_2_a11/
%G ru
%F TVP_2004_49_2_a11
A. I. Sakhanenko. On transient phenomena in random walks. Teoriâ veroâtnostej i ee primeneniâ, Tome 49 (2004) no. 2, pp. 382-395. http://geodesic.mathdoc.fr/item/TVP_2004_49_2_a11/