On transient phenomena in random walks
Teoriâ veroâtnostej i ee primeneniâ, Tome 49 (2004) no. 2, pp. 382-395 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $\overline S_n=\max_{1\le k\le n}\sum_{i=1}^{k}X_{i,n}$, where for any $n=1,2,\dots$ the sequence $X_{1,n},\dots, X_{n,n}$ consists of independent and identically distributed random variables with finite positive variances. This paper studies the problem of obtaining simple and unimprovable sufficient conditions of the Lindeberg type which guarantee the convergence of the normalized variable $(\overline S_n-A_n)/B_n$ to a nondegenerate random variable when the constants $A_n$ and $B_n>0$ are chosen, respectively. The results that Prokhorov and Borovkov obtained are simplified, refined, and strengthened. In particular, an unexplored case of when $D X_{1,n}\to 0$ as $n\to\infty$ is considered in detail.
Keywords: triangular array, maximum of sequential sums, invariance principle, Prokhorov distance.
Mots-clés : uniform convergence of distributions, limit distributions
@article{TVP_2004_49_2_a11,
     author = {A. I. Sakhanenko},
     title = {On transient phenomena in random walks},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {382--395},
     year = {2004},
     volume = {49},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2004_49_2_a11/}
}
TY  - JOUR
AU  - A. I. Sakhanenko
TI  - On transient phenomena in random walks
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2004
SP  - 382
EP  - 395
VL  - 49
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TVP_2004_49_2_a11/
LA  - ru
ID  - TVP_2004_49_2_a11
ER  - 
%0 Journal Article
%A A. I. Sakhanenko
%T On transient phenomena in random walks
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2004
%P 382-395
%V 49
%N 2
%U http://geodesic.mathdoc.fr/item/TVP_2004_49_2_a11/
%G ru
%F TVP_2004_49_2_a11
A. I. Sakhanenko. On transient phenomena in random walks. Teoriâ veroâtnostej i ee primeneniâ, Tome 49 (2004) no. 2, pp. 382-395. http://geodesic.mathdoc.fr/item/TVP_2004_49_2_a11/

[1] Prokhorov Yu. V., “Perekhodnye yavleniya v protsessakh massovogo obsluzhivaniya”, Litov. matem. sb., 3:1 (1963), 199–205 | MR

[2] Borovkov A. A., Veroyatnostnye protsessy v teorii massovogo obsluzhivaniya, Nauka, M., 1972, 368 pp. | MR

[3] Aleshkyavichene A. K., Nagaev S. V., “Perekhodnye yavleniya v sluchainom bluzhdanii”, Teoriya veroyatn. i ee primen., 48:1 (2003), 3–21 | MR

[4] Malmquist S., “On certain confidence contours for distribution functions”, Ann. Math. Statist., 25 (1954), 523–533 | DOI | MR | Zbl

[5] Skorokhod A. V., Issledovaniya po teorii sluchainykh protsessov, Izd-vo Kievskogo un-ta, Kiev, 1961, 216 pp.

[6] Kruglov V. M., Chzhan Bo, “Predelnye teoremy dlya maksimalnykh sluchainykh summ”, Teoriya veroyatn. i ee primen., 41:3 (1996), 520–532 | MR | Zbl

[7] Borovkov A. A., Mogulskii A. A., Sakhanenko A. I., “Predelnye teoremy dlya sluchainykh protsessov”, Itogi nauki i tekhniki, sovr. problemy matem., fundam. napr., 82, 1995, 5–194 | MR

[8] Petrov V. V., Summy nezavisimykh sluchainykh velichin, Nauka, M., 1972, 416 pp. | MR