Galton--Watson branching processes in a random environment.~II: Finite-dimensional distributions
Teoriâ veroâtnostej i ee primeneniâ, Tome 49 (2004) no. 2, pp. 231-268

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $Z_n$ be the number of particles at moment $n$ in a branching process in a random environment. Assuming that $Z_n$ is “critical” in a certain sense we prove theorems describing the asymptotic behavior as $n\to\infty$ of the distribution of the vector $(Z_{[nt_1]},\dots,Z_{[nt_{b}]})$, of the number of particles in the process at moments $0[nt_1]\dots[nt_{b}]=n$ given $ Z_n>0$.
Keywords: branching processes in random environment, survival probability, limit theorems, critical branching process, random walks, Spitzer condition
Mots-clés : stable distributions, joint distributions.
@article{TVP_2004_49_2_a1,
     author = {V. A. Vatutin and E. E. D'yakonova},
     title = {Galton--Watson branching processes in a random {environment.~II:} {Finite-dimensional} distributions},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {231--268},
     publisher = {mathdoc},
     volume = {49},
     number = {2},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2004_49_2_a1/}
}
TY  - JOUR
AU  - V. A. Vatutin
AU  - E. E. D'yakonova
TI  - Galton--Watson branching processes in a random environment.~II: Finite-dimensional distributions
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2004
SP  - 231
EP  - 268
VL  - 49
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_2004_49_2_a1/
LA  - ru
ID  - TVP_2004_49_2_a1
ER  - 
%0 Journal Article
%A V. A. Vatutin
%A E. E. D'yakonova
%T Galton--Watson branching processes in a random environment.~II: Finite-dimensional distributions
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2004
%P 231-268
%V 49
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_2004_49_2_a1/
%G ru
%F TVP_2004_49_2_a1
V. A. Vatutin; E. E. D'yakonova. Galton--Watson branching processes in a random environment.~II: Finite-dimensional distributions. Teoriâ veroâtnostej i ee primeneniâ, Tome 49 (2004) no. 2, pp. 231-268. http://geodesic.mathdoc.fr/item/TVP_2004_49_2_a1/