Mots-clés : stable distributions, joint distributions.
@article{TVP_2004_49_2_a1,
author = {V. A. Vatutin and E. E. D'yakonova},
title = {Galton{\textendash}Watson branching processes in a random {environment.~II:} {Finite-dimensional} distributions},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {231--268},
year = {2004},
volume = {49},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2004_49_2_a1/}
}
TY - JOUR AU - V. A. Vatutin AU - E. E. D'yakonova TI - Galton–Watson branching processes in a random environment. II: Finite-dimensional distributions JO - Teoriâ veroâtnostej i ee primeneniâ PY - 2004 SP - 231 EP - 268 VL - 49 IS - 2 UR - http://geodesic.mathdoc.fr/item/TVP_2004_49_2_a1/ LA - ru ID - TVP_2004_49_2_a1 ER -
%0 Journal Article %A V. A. Vatutin %A E. E. D'yakonova %T Galton–Watson branching processes in a random environment. II: Finite-dimensional distributions %J Teoriâ veroâtnostej i ee primeneniâ %D 2004 %P 231-268 %V 49 %N 2 %U http://geodesic.mathdoc.fr/item/TVP_2004_49_2_a1/ %G ru %F TVP_2004_49_2_a1
V. A. Vatutin; E. E. D'yakonova. Galton–Watson branching processes in a random environment. II: Finite-dimensional distributions. Teoriâ veroâtnostej i ee primeneniâ, Tome 49 (2004) no. 2, pp. 231-268. http://geodesic.mathdoc.fr/item/TVP_2004_49_2_a1/
[1] Afanasev V. I., “Novaya predelnaya teorema dlya kriticheskogo vetvyaschegosya protsessa v sluchainoi srede”, Diskretn. matem., 9:3 (1997), 52–67 | MR
[2] Afanasyev V. I., Geiger J., Kersting G., Vatutin V. A., “Criticality for branching processes in random environment”, Ann. Probab. (to appear) | MR
[3] Bertoin J., Lévy Processes, Cambridge Univ. Press, Cambridge, 1996, 266 pp. | MR
[4] Bingham N. H., Goldie C. M., Teugels J. L., Regular Variation, Cambridge Univ. Press, Cambridge, 1987, 491 pp. | MR | Zbl
[5] Feller V., Vvedenie v teoriyu veroyatnostei i ee prilozheniya, v. 2, Mir, M., 1984, 752 pp. | MR
[6] Geiger J., Kersting G., “The survival probability of a critical branching process in random environment”, Teoriya veroyatn. i ee primen., 45:3 (2000), 607–615 | MR | Zbl
[7] Doney R. A., “Spitzer's condition and ladder variables in random walks”, Probab. Theory Related Fields, 101:4 (1995), 577–580 | DOI | MR | Zbl
[8] Durrett R., “Conditioned limit theorems for some null recurrent Markov processes”, Ann. Probab., 6:5 (1978), 798–828 | DOI | MR | Zbl
[9] Hirano K., “Determination of the limiting coefficient for exponential functionals of random walks with positive drift”, J. Math. Sci. Univ. Tokyo, 5:2 (1998), 299–332 | MR | Zbl
[10] Vatutin V. A., Dyakonova E. E., “Reduced branching processes in random environment”, Mathematics and Computer Science, v. II, Algorithms, Trees, Combinatorics and Probabilities, eds. B. Chauvin et al., Birkhäuser, Basel, 2002, 455–467 | MR | Zbl
[11] Vatutin V. A., Dyakonova E. E., “Yaglom type limit theorem for branching processes in random environment”, Mathematics and Computer Science, v. III, Algorithms, Trees, Combinatorics and Probabilities, eds. M. Drmota et al., Birkhäuser, Basel, 2004 (to appear) | MR
[12] Vatutin V. A., Dyakonova E. E., “Vetvyaschiesya protsessy Galtona–Vatsona v sluchainoi srede. I: Predelnye teoremy”, Teoriya veroyatn. i ee. primen., 48:2 (2003), 274–300 | MR | Zbl
[13] Spitser F., Printsipy sluchainogo bluzhdaniya, Mir, M., 1969, 472 pp.