Galton–Watson branching processes in a random environment. II: Finite-dimensional distributions
Teoriâ veroâtnostej i ee primeneniâ, Tome 49 (2004) no. 2, pp. 231-268 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $Z_n$ be the number of particles at moment $n$ in a branching process in a random environment. Assuming that $Z_n$ is “critical” in a certain sense we prove theorems describing the asymptotic behavior as $n\to\infty$ of the distribution of the vector $(Z_{[nt_1]},\dots,Z_{[nt_{b}]})$, of the number of particles in the process at moments $0<[nt_1]<\dots<[nt_{b}]=n$ given $ Z_n>0$.
Keywords: branching processes in random environment, survival probability, limit theorems, critical branching process, random walks, Spitzer condition
Mots-clés : stable distributions, joint distributions.
@article{TVP_2004_49_2_a1,
     author = {V. A. Vatutin and E. E. D'yakonova},
     title = {Galton{\textendash}Watson branching processes in a random {environment.~II:} {Finite-dimensional} distributions},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {231--268},
     year = {2004},
     volume = {49},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2004_49_2_a1/}
}
TY  - JOUR
AU  - V. A. Vatutin
AU  - E. E. D'yakonova
TI  - Galton–Watson branching processes in a random environment. II: Finite-dimensional distributions
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2004
SP  - 231
EP  - 268
VL  - 49
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TVP_2004_49_2_a1/
LA  - ru
ID  - TVP_2004_49_2_a1
ER  - 
%0 Journal Article
%A V. A. Vatutin
%A E. E. D'yakonova
%T Galton–Watson branching processes in a random environment. II: Finite-dimensional distributions
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2004
%P 231-268
%V 49
%N 2
%U http://geodesic.mathdoc.fr/item/TVP_2004_49_2_a1/
%G ru
%F TVP_2004_49_2_a1
V. A. Vatutin; E. E. D'yakonova. Galton–Watson branching processes in a random environment. II: Finite-dimensional distributions. Teoriâ veroâtnostej i ee primeneniâ, Tome 49 (2004) no. 2, pp. 231-268. http://geodesic.mathdoc.fr/item/TVP_2004_49_2_a1/

[1] Afanasev V. I., “Novaya predelnaya teorema dlya kriticheskogo vetvyaschegosya protsessa v sluchainoi srede”, Diskretn. matem., 9:3 (1997), 52–67 | MR

[2] Afanasyev V. I., Geiger J., Kersting G., Vatutin V. A., “Criticality for branching processes in random environment”, Ann. Probab. (to appear) | MR

[3] Bertoin J., Lévy Processes, Cambridge Univ. Press, Cambridge, 1996, 266 pp. | MR

[4] Bingham N. H., Goldie C. M., Teugels J. L., Regular Variation, Cambridge Univ. Press, Cambridge, 1987, 491 pp. | MR | Zbl

[5] Feller V., Vvedenie v teoriyu veroyatnostei i ee prilozheniya, v. 2, Mir, M., 1984, 752 pp. | MR

[6] Geiger J., Kersting G., “The survival probability of a critical branching process in random environment”, Teoriya veroyatn. i ee primen., 45:3 (2000), 607–615 | MR | Zbl

[7] Doney R. A., “Spitzer's condition and ladder variables in random walks”, Probab. Theory Related Fields, 101:4 (1995), 577–580 | DOI | MR | Zbl

[8] Durrett R., “Conditioned limit theorems for some null recurrent Markov processes”, Ann. Probab., 6:5 (1978), 798–828 | DOI | MR | Zbl

[9] Hirano K., “Determination of the limiting coefficient for exponential functionals of random walks with positive drift”, J. Math. Sci. Univ. Tokyo, 5:2 (1998), 299–332 | MR | Zbl

[10] Vatutin V. A., Dyakonova E. E., “Reduced branching processes in random environment”, Mathematics and Computer Science, v. II, Algorithms, Trees, Combinatorics and Probabilities, eds. B. Chauvin et al., Birkhäuser, Basel, 2002, 455–467 | MR | Zbl

[11] Vatutin V. A., Dyakonova E. E., “Yaglom type limit theorem for branching processes in random environment”, Mathematics and Computer Science, v. III, Algorithms, Trees, Combinatorics and Probabilities, eds. M. Drmota et al., Birkhäuser, Basel, 2004 (to appear) | MR

[12] Vatutin V. A., Dyakonova E. E., “Vetvyaschiesya protsessy Galtona–Vatsona v sluchainoi srede. I: Predelnye teoremy”, Teoriya veroyatn. i ee. primen., 48:2 (2003), 274–300 | MR | Zbl

[13] Spitser F., Printsipy sluchainogo bluzhdaniya, Mir, M., 1969, 472 pp.