On probabilities of large deviations for random walks. II. Regular exponentially decaying distributions
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 49 (2004) no. 2, pp. 209-230
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We establish exact asymptotic behavior for the probabilities of crossing arbitrary curvilinear boundaries in the large deviations range by random walks, whose jump distribution tails differ from an exponential function by an integrable regularly varying factor. In this interesting transient case, there exists a “lower subzone" of the zone of large deviations, where the classical exact asymptotic results hold true, and an "upper subzone,” where only results on the crude logarithmic asymptotics were available. Now we derive exact asymptotic behavior for the latter subzone and show that it is, in a sense, close to that described in the first part of the paper [Theory Probab. Appl., 46 (2001), pp. 193–213], where we dealt with regularly varying distribution tails. Moreover, under an additional "asymptotic smoothness" condition on the jumps distribution, we establish an asymptotic expansion for the tails of the distributions of the sums of the jumps in the large deviations range.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
large deviations, random walk, regular variation, exponential tail.
                    
                  
                
                
                @article{TVP_2004_49_2_a0,
     author = {A. A. Borovkov and K. A. Borovkov},
     title = {On probabilities of large deviations for random walks. {II.} {Regular} exponentially decaying distributions},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {209--230},
     publisher = {mathdoc},
     volume = {49},
     number = {2},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2004_49_2_a0/}
}
                      
                      
                    TY - JOUR AU - A. A. Borovkov AU - K. A. Borovkov TI - On probabilities of large deviations for random walks. II. Regular exponentially decaying distributions JO - Teoriâ veroâtnostej i ee primeneniâ PY - 2004 SP - 209 EP - 230 VL - 49 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_2004_49_2_a0/ LA - ru ID - TVP_2004_49_2_a0 ER -
%0 Journal Article %A A. A. Borovkov %A K. A. Borovkov %T On probabilities of large deviations for random walks. II. Regular exponentially decaying distributions %J Teoriâ veroâtnostej i ee primeneniâ %D 2004 %P 209-230 %V 49 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/TVP_2004_49_2_a0/ %G ru %F TVP_2004_49_2_a0
A. A. Borovkov; K. A. Borovkov. On probabilities of large deviations for random walks. II. Regular exponentially decaying distributions. Teoriâ veroâtnostej i ee primeneniâ, Tome 49 (2004) no. 2, pp. 209-230. http://geodesic.mathdoc.fr/item/TVP_2004_49_2_a0/
