On probabilities of large deviations for random walks. II. Regular exponentially decaying distributions
Teoriâ veroâtnostej i ee primeneniâ, Tome 49 (2004) no. 2, pp. 209-230 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We establish exact asymptotic behavior for the probabilities of crossing arbitrary curvilinear boundaries in the large deviations range by random walks, whose jump distribution tails differ from an exponential function by an integrable regularly varying factor. In this interesting transient case, there exists a “lower subzone" of the zone of large deviations, where the classical exact asymptotic results hold true, and an "upper subzone,” where only results on the crude logarithmic asymptotics were available. Now we derive exact asymptotic behavior for the latter subzone and show that it is, in a sense, close to that described in the first part of the paper [Theory Probab. Appl., 46 (2001), pp. 193–213], where we dealt with regularly varying distribution tails. Moreover, under an additional "asymptotic smoothness" condition on the jumps distribution, we establish an asymptotic expansion for the tails of the distributions of the sums of the jumps in the large deviations range.
Keywords: large deviations, random walk, regular variation, exponential tail.
@article{TVP_2004_49_2_a0,
     author = {A. A. Borovkov and K. A. Borovkov},
     title = {On probabilities of large deviations for random walks. {II.} {Regular} exponentially decaying distributions},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {209--230},
     year = {2004},
     volume = {49},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2004_49_2_a0/}
}
TY  - JOUR
AU  - A. A. Borovkov
AU  - K. A. Borovkov
TI  - On probabilities of large deviations for random walks. II. Regular exponentially decaying distributions
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2004
SP  - 209
EP  - 230
VL  - 49
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TVP_2004_49_2_a0/
LA  - ru
ID  - TVP_2004_49_2_a0
ER  - 
%0 Journal Article
%A A. A. Borovkov
%A K. A. Borovkov
%T On probabilities of large deviations for random walks. II. Regular exponentially decaying distributions
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2004
%P 209-230
%V 49
%N 2
%U http://geodesic.mathdoc.fr/item/TVP_2004_49_2_a0/
%G ru
%F TVP_2004_49_2_a0
A. A. Borovkov; K. A. Borovkov. On probabilities of large deviations for random walks. II. Regular exponentially decaying distributions. Teoriâ veroâtnostej i ee primeneniâ, Tome 49 (2004) no. 2, pp. 209-230. http://geodesic.mathdoc.fr/item/TVP_2004_49_2_a0/

[1] Bingham N. H., Goldie C. M., Teugels J. L., Regular Variation, Cambridge Univ. Press, Cambridge, 1987, 491 pp. | MR | Zbl

[2] Borovkov A. A., “Predelnye teoremy o raspredelenii maksimuma summ ogranichennykh reshetchatykh sluchainykh velichin. I, II”, Teoriya veroyatn. i ee primen., 5:2 (1960), 137–171 ; 4, 377–392 | MR | Zbl | Zbl

[3] Borovkov A. A., “Novye predelnye teoremy v granichnykh zadachakh dlya summ nezavisimykh slagaemykh”, Sib. matem. zhurn., 3:5 (1965), 645–694 | MR

[4] Borovkov A. A., “Analiz bolshikh uklonenii v granichnykh zadachakh s proizvolnymi granitsami. I, II”, Sib. matem. zhurn., 5:2 (1964), 253–289 ; 2, 750–767 | MR | Zbl | MR | Zbl

[5] Borovkov A. A., “Granichnye zadachi dlya sluchainykh bluzhdanii i bolshie ukloneniya v funktsionalnykh prostranstvakh”, Teoriya veroyatn. i ee primen., 12:4 (1967), 635–654 | MR | Zbl

[6] Borovkov A. A., Veroyatnostnye protsessy v teorii massovogo obsluzhivaniya, Nauka, M., 1972, 368 pp. | MR

[7] Borovkov A.Ȧ., “O preobrazovanii Kramera, bolshikh ukloneniyakh v granichnykh zadachakh i uslovnom printsipe invariantnosti”, Sib. matem. zhurn., 36:3 (1995), 493–509 | MR | Zbl

[8] Borovkov A. A., Teoriya veroyatnostei, Nauka, M., 1986, 431 pp. | MR | Zbl

[9] Borovkov A. A., Borovkov K. A., “Veroyatnosti bolshikh uklonenii dlya sluchainykh bluzhdanii s regulyarnymi raspredeleniyami skachkov”, Dokl. RAN, 371:1 (2000), 14–16 | MR | Zbl

[10] Borovkov A. A., Borovkov K. A., “O veroyatnostyakh bolshikh uklonenii dlya sluchainykh bluzhdanii. I. Raspredeleniya s pravilno izmenyayuschimisya khvostami”, Teoriya veroyatn. i ee primen., 46:2 (2001), 209–232 | MR | Zbl

[11] Dembo A., Zeitouni O., Large Deviation Techniques and Applications, Jones and Bartlett, Boston, 1993, 346 pp. | MR | Zbl

[12] Höglund T., “A unified formulation of the central limit theorem for small and large deviations from the mean”, Z. Wahrscheinlichkeitstheor. verw. Geb., 49 (1979), 105–117 | DOI | MR | Zbl

[13] Korshunov D. A., “Veroyatnosti bolshikh uklonenii maksimumov summ nezavisimykh sluchainykh slagaemykh s otritsatelnym srednim i subeksponentsialnym raspredeleniem”, Teoriya veroyatn. i ee primen., 46:2 (2001), 387–397 | MR | Zbl

[14] Nagaev A. V., “Kramerovskie bolshie ukloneniya v sluchae, kogda krainee sopryazhennoe raspredelenie imeet tyazhelyi khvost”, Teoriya veroyatn. i ee primen., 43:3 (1998), 456–475 | MR | Zbl

[15] Nagaev S. V., “Large deviations of sums of independent random variables”, Ann. Probab., 7:5 (1979), 745–789 | DOI | MR | Zbl

[16] Petrov V. V., “O veroyatnostyakh bolshikh uklonenii summ nezavisimykh sluchainykh velichin”, Teoriya veroyatn. i ee primen., 10:2 (1965), 310–322 | MR | Zbl

[17] Petrov V. V., Summy nezavisimykh sluchainykh velichin, Nauka, M., 1972, 416 pp. | MR

[18] Stone C., “On local and ratio limit theorems”, Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, II, part 2, ed. I. Negman, Univ. California Press, Berkeley, 1967, 217–224 | MR | Zbl

[19] Vinogradov V., Refined Large Deviation Limit Theorems, Longman, Harlow, 1994, 212 pp. | MR | Zbl