Local visitation measures for some sequences of random variables with
Teoriâ veroâtnostej i ee primeneniâ, Tome 49 (2004) no. 1, pp. 155-164 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For the sequence of equally distributed random variables $\{x_n,\ n\ge 1\}$, satisfying some mixing condition, the local visitation measures of the sequences $\{x_n/a_n,\ n\ge 1\}$ are considered with various real sequences $\{a_n,\ n\ge 1\}$ tending monotonically to 0. We give sufficient conditions for the measures $\{\sum_{k=1}^n P(x_k/a_k)^{-1},\ n\ge 1\}$ to be the local visitation measures for $\{x_n/a_n,\ n\ge 1\}$ with probability 1.
Keywords: local visitation measures, mixing.
@article{TVP_2004_49_1_a8,
     author = {M. A. Vlasenko},
     title = {Local visitation measures for some sequences of random variables with},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {155--164},
     year = {2004},
     volume = {49},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2004_49_1_a8/}
}
TY  - JOUR
AU  - M. A. Vlasenko
TI  - Local visitation measures for some sequences of random variables with
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2004
SP  - 155
EP  - 164
VL  - 49
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TVP_2004_49_1_a8/
LA  - ru
ID  - TVP_2004_49_1_a8
ER  - 
%0 Journal Article
%A M. A. Vlasenko
%T Local visitation measures for some sequences of random variables with
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2004
%P 155-164
%V 49
%N 1
%U http://geodesic.mathdoc.fr/item/TVP_2004_49_1_a8/
%G ru
%F TVP_2004_49_1_a8
M. A. Vlasenko. Local visitation measures for some sequences of random variables with. Teoriâ veroâtnostej i ee primeneniâ, Tome 49 (2004) no. 1, pp. 155-164. http://geodesic.mathdoc.fr/item/TVP_2004_49_1_a8/

[1] Ukrainian Math. J., 48:8, 1182–1201, 1997, MR 98f:60126 | DOI | MR | Zbl

[2] Ukrainian Math. J., 51:1 (1999), 134–139, MR 2001f:60039 | DOI | DOI | MR | Zbl

[3] Dorogovtsev A. A., Denis'evskij N. A., “Path-wise behaviour of stationary sequences”, Theory Stochastic Process., 2(18):3–4 (1996), 17–26 | MR | Zbl

[4] Bryc W., Smoleński W., “Moment conditions for almost sure convergence of weakly correlated random variables”, Proc. Amer. Math. Soc., 119:2 (1993), 629–635 | DOI | MR | Zbl

[5] Kuipers L., Niederreiter H., Uniform distribution of sequences, Pure and Applied Mathematics, Wiley-Interscience [John Wiley Sons], New York, London, Sydney, 1974, xiv+390 pp. | MR | Zbl

[6] Dorogovtsev A. Ya., Mathematical analysis, v. 1, Lybid', Kyiv, 1993

[7] Billinsley P., Convergence of probability measures, John Wiley Sons, Inc., New York, London, Sydney, 1968, xii+253 pp. | MR