Mots-clés : cocycle perturbation.
@article{TVP_2004_49_1_a7,
author = {G. G. Amosov},
title = {On {Markovian} perturbations of the group of},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {145--155},
year = {2004},
volume = {49},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2004_49_1_a7/}
}
G. G. Amosov. On Markovian perturbations of the group of. Teoriâ veroâtnostej i ee primeneniâ, Tome 49 (2004) no. 1, pp. 145-155. http://geodesic.mathdoc.fr/item/TVP_2004_49_1_a7/
[1] Kolmogorov A. N., “Krivye v gilbertovskom prostranstve, invariantnye po otnosheniyu k odnoparametricheskoi gruppe dvizhenii”, Dokl. AN SSSR, 26:1 (1940), 6–9 | Zbl
[2] Kolmogorov A. N., “Spiral Vinera i nekotorye drugie interesnye krivye v gilbertovskom prostranstve”, Dokl. AN SSSR, 26:2 (1940), 115–118 | MR | Zbl
[3] Braun K. S., Kogomologii grupp, Nauka, M., 1987, 384 pp. | MR
[4] Gisharde A., Kogomologii topologicheskikh grupp i algebr Li, Mir, M., 1984, 262 pp. | MR
[5] Parthasarathy K. R., An Introduction to Quantum Stochastic Calculus, Birkhäuser, Basel, 1992, 290 pp. | MR | Zbl
[6] Holevo A. S., Statistical Structure of Quantum Theory, Springer-Verlag, Berlin, 2001, 159 pp. | MR
[7] Kholevo A. S., “Kvantovaya veroyatnost i kvantovaya statistika”, Itogi nauki i tekhniki. Sovr. probl. matem. Fundam. napr., 83, 1991, 5–132 | MR | Zbl
[8] Accardi L., “On the quantum Feynman–Kac formula”, Rend. Sem. Mat. Fis. Milano, 48 (1978), 135–180 | DOI | MR | Zbl
[9] Accardi L., Frigerio A., Lewis J. T., “Quantum stochastic processes”, Publ. Res. Inst. Math. Sci., 18:1 (1982), 97–133 | DOI | MR | Zbl
[10] Adamyan V. M., Arov D. Z., “Ob odnom klasse operatorov rasseyaniya i kharakteristicheskikh operator-funktsii szhatii”, Dokl. AN SSSR, 160:1 (1965), 9–12 | Zbl
[11] Adamyan V. M., Arov D. Z., “Ob operatorakh rasseyaniya i polugruppakh szhatii v gilbertovom prostranstve”, Dokl. AN SSSR, 165:1 (1965), 9–12 | Zbl
[12] Rozanov Yu. A., Statsionarnye sluchainye protsessy, Fizmatgiz, M., 1963, 284 pp. | MR
[13] Nikolskii N. K., Lektsii ob operatore sdviga, Nauka, M., 1980, 384 pp. | MR
[14] Murakami T., Yamagami S., “On types of quasifree representations of Clifford algebras”, Publ. Res. Inst. Math. Sci., 31 (1995), 33–44 | DOI | MR | Zbl
[15] Amosov G. G., “Cocycle perturbation of quasifree algebraic $K$-flow leads to required asymptotic dynamics of associated completely positive semigroup”, Infin. Dimen. Anal., Quantum Probab. Relat. Top., 3:2 (2000), 237–246 | DOI | MR | Zbl
[16] Amosov G. G., Bulinskii A. V., Shirokov M. E., “Regulyarnye polugruppy endomorfizmov faktorov Neimana”, Matem. zametki, 70:5 (2001), 643–659 | MR | Zbl
[17] Khida T., Brounovskoe dvizhenie, Nauka, M., 1987, 304 pp. | MR
[18] Feldman J., “Equivalence and perpendicularity of Gaussian processes”, Pacific J. Math., 8 (1958), 699–708 ; Corrections: 9 (1959), 1295–1296 | MR | Zbl | MR | Zbl
[19] Guichardet A., Symmetric Hilbert Spaces and Related Topics, Lecture Notes in Math., 261, Springer-Verlag, Berlin, New York, 1972, 197 pp. | MR | Zbl
[20] Araki H., Yamagami S., “On quasi-equivalence of quasifree states of the canonical commutation relation”, Publ. Res. Inst. Math. Sci., 18:2 (1982), 703–758 | DOI | MR | Zbl
[21] Amosov G. G., “Ob approksimatsii polugrupp izometrii v gilbertovom prostranstve”, Izv. vuzov, ser. matem., 2000, no. 2, 7–12 | MR | Zbl
[22] Amosov G. G., “Approksimatsiya po modulyu $s_2$ izometricheskikh operatorov i kotsiklicheskaya sopryazhennost endomorfizmov algebry KAS”, Fundam. i prikl. matem., 7:3 (2001), 925–930 | MR | Zbl
[23] Baranov A. D., “Isometric embeddings of the spaces $K_\Theta$ in the upper half-plane”, J. Math. Sci. (New York), 105:5 (2001), 2319–2329 | DOI | MR