On Markovian perturbations of the group of
Teoriâ veroâtnostej i ee primeneniâ, Tome 49 (2004) no. 1, pp. 145-155 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We introduce “Markovian” cocycle perturbations of the group of unitary operators associated with a stochastic process with stationary increments, which are characterized by a localization of the perturbation to the algebra of past events. The definition we give is necessary because the Markovian perturbation of the group associated with a stochastic process with noncorrelated increments results in the perturbed group for which there exists a stochastic process with noncorrelated increments associated with it. On the other hand, some “deterministic” stochastic process lying in the past can also be associated with the perturbed group. The model of Markovian perturbations describing all Markovian cocycles up to a unitary equivalence of the perturbations has been constructed. Using this model, we construct Markovian cocycles transforming Gaussian measures to the equivalent Gaussian measures.
Keywords: stochastic process with stationary increments, group of unitary operators
Mots-clés : cocycle perturbation.
@article{TVP_2004_49_1_a7,
     author = {G. G. Amosov},
     title = {On {Markovian} perturbations of the group of},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {145--155},
     year = {2004},
     volume = {49},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2004_49_1_a7/}
}
TY  - JOUR
AU  - G. G. Amosov
TI  - On Markovian perturbations of the group of
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2004
SP  - 145
EP  - 155
VL  - 49
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TVP_2004_49_1_a7/
LA  - ru
ID  - TVP_2004_49_1_a7
ER  - 
%0 Journal Article
%A G. G. Amosov
%T On Markovian perturbations of the group of
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2004
%P 145-155
%V 49
%N 1
%U http://geodesic.mathdoc.fr/item/TVP_2004_49_1_a7/
%G ru
%F TVP_2004_49_1_a7
G. G. Amosov. On Markovian perturbations of the group of. Teoriâ veroâtnostej i ee primeneniâ, Tome 49 (2004) no. 1, pp. 145-155. http://geodesic.mathdoc.fr/item/TVP_2004_49_1_a7/

[1] Kolmogorov A. N., “Krivye v gilbertovskom prostranstve, invariantnye po otnosheniyu k odnoparametricheskoi gruppe dvizhenii”, Dokl. AN SSSR, 26:1 (1940), 6–9 | Zbl

[2] Kolmogorov A. N., “Spiral Vinera i nekotorye drugie interesnye krivye v gilbertovskom prostranstve”, Dokl. AN SSSR, 26:2 (1940), 115–118 | MR | Zbl

[3] Braun K. S., Kogomologii grupp, Nauka, M., 1987, 384 pp. | MR

[4] Gisharde A., Kogomologii topologicheskikh grupp i algebr Li, Mir, M., 1984, 262 pp. | MR

[5] Parthasarathy K. R., An Introduction to Quantum Stochastic Calculus, Birkhäuser, Basel, 1992, 290 pp. | MR | Zbl

[6] Holevo A. S., Statistical Structure of Quantum Theory, Springer-Verlag, Berlin, 2001, 159 pp. | MR

[7] Kholevo A. S., “Kvantovaya veroyatnost i kvantovaya statistika”, Itogi nauki i tekhniki. Sovr. probl. matem. Fundam. napr., 83, 1991, 5–132 | MR | Zbl

[8] Accardi L., “On the quantum Feynman–Kac formula”, Rend. Sem. Mat. Fis. Milano, 48 (1978), 135–180 | DOI | MR | Zbl

[9] Accardi L., Frigerio A., Lewis J. T., “Quantum stochastic processes”, Publ. Res. Inst. Math. Sci., 18:1 (1982), 97–133 | DOI | MR | Zbl

[10] Adamyan V. M., Arov D. Z., “Ob odnom klasse operatorov rasseyaniya i kharakteristicheskikh operator-funktsii szhatii”, Dokl. AN SSSR, 160:1 (1965), 9–12 | Zbl

[11] Adamyan V. M., Arov D. Z., “Ob operatorakh rasseyaniya i polugruppakh szhatii v gilbertovom prostranstve”, Dokl. AN SSSR, 165:1 (1965), 9–12 | Zbl

[12] Rozanov Yu. A., Statsionarnye sluchainye protsessy, Fizmatgiz, M., 1963, 284 pp. | MR

[13] Nikolskii N. K., Lektsii ob operatore sdviga, Nauka, M., 1980, 384 pp. | MR

[14] Murakami T., Yamagami S., “On types of quasifree representations of Clifford algebras”, Publ. Res. Inst. Math. Sci., 31 (1995), 33–44 | DOI | MR | Zbl

[15] Amosov G. G., “Cocycle perturbation of quasifree algebraic $K$-flow leads to required asymptotic dynamics of associated completely positive semigroup”, Infin. Dimen. Anal., Quantum Probab. Relat. Top., 3:2 (2000), 237–246 | DOI | MR | Zbl

[16] Amosov G. G., Bulinskii A. V., Shirokov M. E., “Regulyarnye polugruppy endomorfizmov faktorov Neimana”, Matem. zametki, 70:5 (2001), 643–659 | MR | Zbl

[17] Khida T., Brounovskoe dvizhenie, Nauka, M., 1987, 304 pp. | MR

[18] Feldman J., “Equivalence and perpendicularity of Gaussian processes”, Pacific J. Math., 8 (1958), 699–708 ; Corrections: 9 (1959), 1295–1296 | MR | Zbl | MR | Zbl

[19] Guichardet A., Symmetric Hilbert Spaces and Related Topics, Lecture Notes in Math., 261, Springer-Verlag, Berlin, New York, 1972, 197 pp. | MR | Zbl

[20] Araki H., Yamagami S., “On quasi-equivalence of quasifree states of the canonical commutation relation”, Publ. Res. Inst. Math. Sci., 18:2 (1982), 703–758 | DOI | MR | Zbl

[21] Amosov G. G., “Ob approksimatsii polugrupp izometrii v gilbertovom prostranstve”, Izv. vuzov, ser. matem., 2000, no. 2, 7–12 | MR | Zbl

[22] Amosov G. G., “Approksimatsiya po modulyu $s_2$ izometricheskikh operatorov i kotsiklicheskaya sopryazhennost endomorfizmov algebry KAS”, Fundam. i prikl. matem., 7:3 (2001), 925–930 | MR | Zbl

[23] Baranov A. D., “Isometric embeddings of the spaces $K_\Theta$ in the upper half-plane”, J. Math. Sci. (New York), 105:5 (2001), 2319–2329 | DOI | MR