Adaptive estimation of distribution density
Teoriâ veroâtnostej i ee primeneniâ, Tome 49 (2004) no. 1, pp. 126-144 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper is devoted to the problem of adaptive statistical estimation of the distribution density defined on a finite interval. Projective-type estimators in the basis of Jacobi polynomials is considered. An adaptive statistical estimator, which is asymptotically minimax in the case of mean-square losses for all sets from a certain family of contracting sets of functions having different smoothness, is constructed. The smoothness conditions are stated in terms of $L_2$-norms of residuals of distribution densities when approximating them by linear combinations of a finite number of the first Jacobi polynomials. Extension of the result to other orthonormal bases possessing some natural regularity properties is also discussed.
Keywords: adaptive estimation, locally minimax estimation, Jacobi polynomials, projective-type estimators, mean-square losses.
@article{TVP_2004_49_1_a6,
     author = {R. Rudzkis and M. Radavicius},
     title = {Adaptive estimation of distribution density},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {126--144},
     year = {2004},
     volume = {49},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TVP_2004_49_1_a6/}
}
TY  - JOUR
AU  - R. Rudzkis
AU  - M. Radavicius
TI  - Adaptive estimation of distribution density
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2004
SP  - 126
EP  - 144
VL  - 49
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TVP_2004_49_1_a6/
LA  - en
ID  - TVP_2004_49_1_a6
ER  - 
%0 Journal Article
%A R. Rudzkis
%A M. Radavicius
%T Adaptive estimation of distribution density
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2004
%P 126-144
%V 49
%N 1
%U http://geodesic.mathdoc.fr/item/TVP_2004_49_1_a6/
%G en
%F TVP_2004_49_1_a6
R. Rudzkis; M. Radavicius. Adaptive estimation of distribution density. Teoriâ veroâtnostej i ee primeneniâ, Tome 49 (2004) no. 1, pp. 126-144. http://geodesic.mathdoc.fr/item/TVP_2004_49_1_a6/

[1] Barron A., Birgé L., Massart P., “Risk bounds for model selection via penalization”, Probab. Theory Related Fields, 113:3 (1999), 301–413 | DOI | MR | Zbl

[2] Bentkus R. Yu., “Ob asimptotike minimaksnogo srednekvadraticheskogo riska statisticheskikh otsenok spektralnoi plotnosti v prostranstve $L^2$”, Litov. matem. sb., 25:1 (1985), 23–42 | MR | Zbl

[3] Bentkus R. Yu., Kazbaras A. R., “Ob optimalnykh statisticheskikh otsenkakh plotnosti raspredeleniya”, Dokl. AN SSSR, 258:2 (1981), 265–268 | MR | Zbl

[4] Bretagnolle J., Huber C., “Estimation des densités: risque minimax”, Z. Wahrscheinlichkeitstheor. verw. Geb., 47:2 (1979), 119–137 | DOI | MR | Zbl

[5] Donoho D. L., “Asymptotic minimax risk for sup-norm loss: solution via optimal recovery”, Probab. Theory Related Fields, 99:2 (1994), 145–170 | DOI | MR | Zbl

[6] Donoho D. L., Johnstone I. M., “Ideal spatial adaptation via wavelet shrinkage”, Biometrika, 81:3 (1994), 425–455 | DOI | MR | Zbl

[7] Donoho D. L., Johnstone I. M., “Adapting to unknown smoothness via wavelet shrinkage”, J. Amer. Statist. Assoc., 90:432 (1995), 1200–1224 | DOI | MR | Zbl

[8] Donoho D. L., Johnstone I. M., “Minimax estimation via wavelet shrinkage”, Ann. Statist., 26:3 (1998), 879–921 | DOI | MR | Zbl

[9] Donoho D. L., Liu R. C., MacGibbon K. B., “Minimax risk over hyperrectangles, and implications”, Ann. Statist., 18:3 (1990), 1416–1437 | DOI | MR | Zbl

[10] Donoho D. L., Johnstone I. M., Kerkyacharian G., Picard D., “Density estimation by wavelet thresholding”, Ann. Statist., 24:2 (1996), 508–539 | DOI | MR | Zbl

[11] Efroimovich S. Yu., “Neparametricheskoe otsenivanie plotnosti neizvestnoi gladkosti”, Teoriya veroyatn. i ee primen., 30:3 (1985), 524–534 | MR

[12] Efromovich S., “On nonparametric regression for i.i.d. observations in a general setting”, Ann. Statist., 24:3 (1996), 1126–1144 | DOI | MR | Zbl

[13] Efroimovich S. Yu., Pinsker M. S., “Otsenivanie kvadratichno-integriruemoi spektralnoi plotnosti po posledovatelnosti nablyudenii”, Problemy peredachi informatsii, 17:3 (1981), 50–68 | MR

[14] Efroimovich S. Yu., Pinsker M. S., “Otsenivanie kvadratichno-integriruemoi plotnosti veroyatnosti sluchainoi velichiny”, Problemy peredachi informatsii, 18:3 (1982), 19–38 | MR

[15] Efroimovich S. Yu., Pinsker M. S., “Samoobuchayuschiisya algoritm neparametricheskoi filtratsii”, Avtomatika i telemekhanika, 1984, no. 11, 58–65 | MR

[16] Efroimovich S. Yu., Pinsker M. S., “Samonastraivayuschiisya algoritm minimakskogo neparametricheskogo otsenivaniya spektralnoi plotnosti”, Problemy peredachi informatsii, 22:3 (1986), 62–76 | MR

[17] Golubev G. K., “O kvazilineinykh otsenkakh signalov v $L_2$”, Problemy peredachi informatsii, 26:1 (1990), 19–24 | MR | Zbl

[18] Golubev G. K., “Neparametricheskoe otsenivanie gladkikh plotnostei raspredeleniya v $L_2$”, Problemy peredachi informatsii, 28:1 (1992), 52–62 | MR | Zbl

[19] Golubev G. K., “Neparametricheskoe otsenivanie gladkikh spektralnykh plotnostei gaussovskikh statsionarnykh posledovatelnostei”, Teoriya veroyatn. i ee primen., 38:4 (1993), 775–786 | MR | Zbl

[20] Golubev Yu. K., Levit B. Ya.,Tsybakov A. B., “Asymptotically efficient estimation of analytic functions in Gaussian noise”, Bernoulli, 2:2 (1996), 167–181 | DOI | MR | Zbl

[21] Golubev G. K., Nussbaum M., “A risk bound in Sobolev class regression”, Ann. Statist., 18:2 (1990), 758–778 | DOI | MR | Zbl

[22] Golubev G. K., Nussbaum M., “Adaptivnye splainovye otsenki v neparametricheskoi regressivnoi modeli”, Teoriya veroyatn. i ee primen., 37:3 (1992), 554–561 | MR

[23] Guerre E., Tsybakov A. B., “Exact asymptotic minimax constants for the estimation of analytical functions in $L_p$”, Probab. Theory Related Fields, 112:1 (1998), 33–51 | DOI | MR | Zbl

[24] Ibragimov I. A., Khasminskii R. Z., Asimptoticheskaya teoriya otsenivaniya, Nauka, M., 1979, 528 pp. | MR

[25] Kerkyacharian G., Picard D., “Density estimation by kernel and wavelet method, optimality of Besov spaces”, Statist. Probab. Lett., 18:4 (1993), 327–336 | DOI | MR | Zbl

[26] Korostelev A. P., “Asimptoticheski minimaksnaya otsenka regressii v ravnomernoi norme s tochnostyu do postoyannoi”, Teoriya veroyatn. i ee primen., 38:4 (1993), 875–882 | MR | Zbl

[27] Lepskii O. V., “Ob odnoi zadache adaptivnogo otsenivaniya v gaussovskom belom shume”, Teoriya veroyatn. i ee primen., 35:3 (1990), 459–470 | MR

[28] Lepskii O. V., “Asimptoticheski minimaksnoe adaptivnoe otsenivanie. I. Verkhnie granitsy. Optimalno-adaptivnye otsenki”, Teoriya veroyatn. i ee primen., 36:4 (1991), 645–659 | MR

[29] Lepskii O. V., “Asimptoticheski minimaksnoe adaptivnoe otsenivanie. II. Skhemy bez optimalnoi adaptatsii. Adaptivnye otsenki”, Teoriya veroyatn. i ee primen., 37:3 (1992), 468–481 | MR

[30] Lepskii O. V., “On problems of adaptive estimation in white Gaussian noise”, Topics in Nonparametric Estimation, ed. R. Z. Khasminskii, Amer. Math. Soc., Providence, RI, 1992, 87–106 | MR

[31] Pinsker M. S., “Optimalnaya filtratsiya kvadratichno-integriruemykh signalov na fone gaussovskogo shuma”, Problemy peredachi informatsii, 16:2 (1980), 52–68 | MR | Zbl

[32] Radavičius M., “Efficient nonparametric estimation of distribution density in the basis of algebraic polynomials”, Acta Appl. Math., 38:1 (1995), 13–35 | DOI | MR | Zbl

[33] Radavičius M., Rudzkis R., “Locally minimax efficiency of nonparametric density estimators for $\chi^2$-type losses”, Lithuanian Math. J., 39 (1999), 315–335 | DOI | MR | Zbl

[34] Rudzkis R., “Ob odnoi otsenke spektralnoi plotnosti”, Litov. matem. sb., 25:3 (1985), 163–174 | MR | Zbl

[35] Szegő G., Orthogonal Polynomials, Amer. Math. Soc., Providence, RI, 1959, 421 pp. | MR | Zbl

[36] Stone C. J., “Optimal global rates of convergence for nonparametric regression”, Ann. Statist., 10:4 (1982), 1040–1053 | DOI | MR | Zbl

[37] Tsybakov A. B., “Asimptoticheski effektivnoe otsenivanie signala v $L_2$ s obschei funktsiei poter”, Problemy peredachi informatsii, 33:1 (1997), 94–106 | MR | Zbl

[38] Tsybakov A. B., “Pointwise and sup-norm sharp adaptive estimation of functions on the Sobolev classes”, Ann. Statist., 26:6 (1998), 2420–2469 | DOI | MR | Zbl