Central limit theorems in H\"older topologies
Teoriâ veroâtnostej i ee primeneniâ, Tome 49 (2004) no. 1, pp. 109-125

Voir la notice de l'article provenant de la source Math-Net.Ru

For rather general moduli of smoothness $\rho$, such as $\rho(h)=h^\alpha \log^\beta (c/h)$, we consider the Hölder spaces $H_{\rho}(B)$ of functions $[0,1]^d \to B$, where $B$ is a separable Banach space. Using isomorphism between $H_{\rho}(B)$ and some sequence Banach space we follow a very natural way to study, in terms of second differences, the central limit theorem for independent identically distributed sequences of random elements in $H_{\rho}(B)$.
Keywords: Banach valued Brownian motion, central limit theorem, Rosenthal inequality, second difference, skew pyramidal basis, tightness, type 2 space.
Mots-clés : Schauder decomposition
@article{TVP_2004_49_1_a5,
     author = {A. Ra\v{c}kauskas and Ch. Suquet},
     title = {Central limit theorems in {H\"older} topologies},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {109--125},
     publisher = {mathdoc},
     volume = {49},
     number = {1},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TVP_2004_49_1_a5/}
}
TY  - JOUR
AU  - A. Račkauskas
AU  - Ch. Suquet
TI  - Central limit theorems in H\"older topologies
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2004
SP  - 109
EP  - 125
VL  - 49
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_2004_49_1_a5/
LA  - en
ID  - TVP_2004_49_1_a5
ER  - 
%0 Journal Article
%A A. Račkauskas
%A Ch. Suquet
%T Central limit theorems in H\"older topologies
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2004
%P 109-125
%V 49
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_2004_49_1_a5/
%G en
%F TVP_2004_49_1_a5
A. Račkauskas; Ch. Suquet. Central limit theorems in H\"older topologies. Teoriâ veroâtnostej i ee primeneniâ, Tome 49 (2004) no. 1, pp. 109-125. http://geodesic.mathdoc.fr/item/TVP_2004_49_1_a5/