Central limit theorems in H\"older topologies
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 49 (2004) no. 1, pp. 109-125
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			For rather general moduli of smoothness $\rho$, such
as $\rho(h)=h^\alpha \log^\beta (c/h)$,
we consider the Hölder spaces $H_{\rho}(B)$ of
functions $[0,1]^d \to B$, where $B$ is a separable Banach space. Using
isomorphism between $H_{\rho}(B)$ and some sequence Banach space
we follow a very natural way to study, in terms of
second differences, the central limit theorem
for independent identically distributed
sequences of random elements in $H_{\rho}(B)$.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
Banach valued Brownian motion, central limit theorem, Rosenthal inequality, second difference, skew pyramidal basis, tightness, type 2 space.
Mots-clés : Schauder decomposition
                    
                  
                
                
                Mots-clés : Schauder decomposition
@article{TVP_2004_49_1_a5,
     author = {A. Ra\v{c}kauskas and Ch. Suquet},
     title = {Central limit theorems in {H\"older} topologies},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {109--125},
     publisher = {mathdoc},
     volume = {49},
     number = {1},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TVP_2004_49_1_a5/}
}
                      
                      
                    A. Račkauskas; Ch. Suquet. Central limit theorems in H\"older topologies. Teoriâ veroâtnostej i ee primeneniâ, Tome 49 (2004) no. 1, pp. 109-125. http://geodesic.mathdoc.fr/item/TVP_2004_49_1_a5/
