Central limit theorems in Hölder topologies
Teoriâ veroâtnostej i ee primeneniâ, Tome 49 (2004) no. 1, pp. 109-125 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For rather general moduli of smoothness $\rho$, such as $\rho(h)=h^\alpha \log^\beta (c/h)$, we consider the Hölder spaces $H_{\rho}(B)$ of functions $[0,1]^d \to B$, where $B$ is a separable Banach space. Using isomorphism between $H_{\rho}(B)$ and some sequence Banach space we follow a very natural way to study, in terms of second differences, the central limit theorem for independent identically distributed sequences of random elements in $H_{\rho}(B)$.
Keywords: Banach valued Brownian motion, central limit theorem, Rosenthal inequality, second difference, skew pyramidal basis, tightness, type 2 space.
Mots-clés : Schauder decomposition
@article{TVP_2004_49_1_a5,
     author = {A. Ra\v{c}kauskas and Ch. Suquet},
     title = {Central limit theorems in {H\"older} topologies},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {109--125},
     year = {2004},
     volume = {49},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TVP_2004_49_1_a5/}
}
TY  - JOUR
AU  - A. Račkauskas
AU  - Ch. Suquet
TI  - Central limit theorems in Hölder topologies
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2004
SP  - 109
EP  - 125
VL  - 49
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TVP_2004_49_1_a5/
LA  - en
ID  - TVP_2004_49_1_a5
ER  - 
%0 Journal Article
%A A. Račkauskas
%A Ch. Suquet
%T Central limit theorems in Hölder topologies
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2004
%P 109-125
%V 49
%N 1
%U http://geodesic.mathdoc.fr/item/TVP_2004_49_1_a5/
%G en
%F TVP_2004_49_1_a5
A. Račkauskas; Ch. Suquet. Central limit theorems in Hölder topologies. Teoriâ veroâtnostej i ee primeneniâ, Tome 49 (2004) no. 1, pp. 109-125. http://geodesic.mathdoc.fr/item/TVP_2004_49_1_a5/

[1] Bonic R., Frampton J., Tromba A., “$\Lambda$-manifolds”, J. Funct. Anal., 3 (1969), 310–320 | DOI | MR | Zbl

[2] Ciesielski Z., “On the isomorphisms of the spaces $H_\alpha$ and $m$”, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys., 8 (1960), 217–222 | MR | Zbl

[3] Ciesielski Z., “Hölder conditions for realizations of Gaussian processes”, Trans. Amer. Math. Soc., 99 (1961), 403–413 | DOI | MR | Zbl

[4] Enflo P., “A counterexample to the approximation problem in Banach spaces”, Acta Math., 130 (1973), 309–317 | DOI | MR | Zbl

[5] Delporte J., “Fonctions aléatoires presque sûrement continues sur un intervalle fermé”, Ann. Inst. H. Poincaré, Sect. B, 1 (1964), 111–215 | MR | Zbl

[6] Erickson R. V., “Lipschitz smoothness and convergence with applications to the central limit theorem for summation processes”, Ann. Probab., 9:5 (1981), 831–851 | DOI | MR | Zbl

[7] Hamadouche D., “Weak convergence of smoothed empirical process in Hölder spaces”, Statist. Probab. Lett., 36:4 (1998), 393–400 | DOI | MR | Zbl

[8] Hamadouche D., “Invariance principles in Hölder spaces”, Portugal. Math., 57:2 (2000), 127–151 | MR | Zbl

[9] Kerkyacharian G., Roynette B., “Une démonstration simple des théorèmes de Kolmogorov, Donsker et Ito–Nisio”, C. R. Acad. Sci. Paris Sér. I Math., 312:11 (1991), 877–882 | MR | Zbl

[10] Lamperti J., “On convergence of stochastic processes”, Trans. Amer. Math. Soc., 104 (1962), 430–435 | DOI | MR | Zbl

[11] Ledoux M., “Sur une inégalité de H. P. Rosenthal et le théorème limite central dans les espaces de Banach”, Israel J. of Math., 50:4 (1985), 290–318 | DOI | MR | Zbl

[12] Ledoux M., Talagrand M., Probability in Banach Spaces, Springer-Verlag, Berlin, 1991, 480 pp. | MR | Zbl

[13] Račkauskas A., Suquet Ch., “Central limit theorem in Hölder spaces”, Probab. Math. Statist., 19:1 (1999), 133–152 | MR

[14] Račkauskas A., Suquet Ch., “Random fields and central limit theorem in some generalized Hölder spaces”, Probability Theory and Mathematical Statistics, Proceedings of the Seventh Vilnius Conference (1998), eds. B. Grigelionis et al., TEV, Vilnius; VSP, Utrecht, 1999, 599–616

[15] Račkauskas A., Suquet Ch., “On the Hölderian functional central limit theorem for i.i.d. random elements in Banach space”, Limit Theorems of Probability and Statistics, Proceedings of the Fourth Hungarian Colloquium (Balatonlelle, 1999), János Bolyai Math. Soc., Budapest, 2002, 485–498 | MR

[16] Račkauskas A., Suquet Ch., Existence of versions and central limit theorems in Hölder topologies for Banach space valued random fields, 52-II, Publ. IRMA, Lille, 2000

[17] Račkauskas A., Suquet Ch., “Hölder versions of Banach space valued random fields”, Georgian Math. J., 8:2 (2001), 347–362 | MR

[18] Semadeni Z., Schauder bases in Banach spaces of continuous functions, Lecture Notes in Math., 918, 1982, 135 pp. | MR | Zbl

[19] Singer I., Bases in Banach Spaces, v. II, Springer-Verlag, Berlin, New York, 1981, 880 pp. | MR | Zbl

[20] Suquet Ch., “Tightness in Schauder decomposable Banach spaces”, Amer. Math. Soc. Transl. Ser. 2, 193 (1999), 201–224 | MR