On weak solutions of backward stochastic differential
Teoriâ veroâtnostej i ee primeneniâ, Tome 49 (2004) no. 1, pp. 70-108 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The main objective of this paper consists in discussing the concept of weak solutions of a certain type of backward stochastic differential equations. Using weak convergence in the Meyer–Zheng topology, we shall give a general existence result. The terminal condition $H$ depends in functional form on a driving càdlàg process $X$, and the coefficient $f$ depends on time $t$ and in functional form on $X$ and the solution process $Y$. The functional $f(t,x,y),(t,x,y)\in [0,T]\times D([0,T];{R}^{d+m})$ is assumed to be bounded and continuous in $(x,y)$ on the Skorokhod space $D([0,T]\,;{R}^{d+m})$ in the Meyer–Zheng topology. By several examples of Tsirelson type, we will show that there are, indeed, weak solutions which are not strong, i.e., are not solutions in the usual sense. We will also discuss pathwise uniqueness and uniqueness in law of the solution and conclude, similar to the Yamada–Watanabe theorem, that pathwise uniqueness and weak existence ensure the existence of a (uniquely determined) strong solution. Applying these concepts, we are able to state the existence of a (unique) strong solution if, additionally to the assumptions described above, $f$ satisfies a certain generalized Lipschitz-type condition.
Keywords: backward stochastic differential equation, weak solution, strong solution, Tsirelson's example, pathwise uniqueness, uniqueness in law, Meyer–Zheng topology, weak convergence.
@article{TVP_2004_49_1_a4,
     author = {R. Buckdahn and H. J. Engelbert and A. Rascanu},
     title = {On weak solutions of backward stochastic differential},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {70--108},
     year = {2004},
     volume = {49},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TVP_2004_49_1_a4/}
}
TY  - JOUR
AU  - R. Buckdahn
AU  - H. J. Engelbert
AU  - A. Rascanu
TI  - On weak solutions of backward stochastic differential
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2004
SP  - 70
EP  - 108
VL  - 49
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TVP_2004_49_1_a4/
LA  - en
ID  - TVP_2004_49_1_a4
ER  - 
%0 Journal Article
%A R. Buckdahn
%A H. J. Engelbert
%A A. Rascanu
%T On weak solutions of backward stochastic differential
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2004
%P 70-108
%V 49
%N 1
%U http://geodesic.mathdoc.fr/item/TVP_2004_49_1_a4/
%G en
%F TVP_2004_49_1_a4
R. Buckdahn; H. J. Engelbert; A. Rascanu. On weak solutions of backward stochastic differential. Teoriâ veroâtnostej i ee primeneniâ, Tome 49 (2004) no. 1, pp. 70-108. http://geodesic.mathdoc.fr/item/TVP_2004_49_1_a4/

[1] Antonelli F., Ma J., “Weak solutions of forward-backward SDE's”, Stochastic Anal. Appl., 21:3 (2003), 493–514 | DOI | MR | Zbl

[2] Arkin V. I., Saksonov M. T., “Neobkhodimye usloviya optimalnosti v zadachakh upravleniya stokhasticheskimi differentsialnymi uravneniyami”, Dokl. AN SSSR, 244:1 (1979), 11–15 | MR | Zbl

[3] Bahlali K., Essaky E. H., Hassani M., Pardoux E., “Existence, uniqueness and stability of backward stochastic differential equations with locally monotone coefficient”, C. R. Acad. Sci. Paris Sér. I, 335 (2002), 757–762 | MR | Zbl

[4] Bismut J. M., “Conjugate convex functions in optimal stochastic control”, J. Math. Anal. Appl., 44 (1973), 384–404 | DOI | MR

[5] Bismut J. M., “Contrôle des systèmes linéaires quadratiques: applications de l'intégrale stochastique”, Lecture Notes in Math., 649, 1978, 180–264 | MR | Zbl

[6] Cherny A. S., Engelbert H.-J., “Isolated singular points of stochastic differential equations”, Stochastic Processes and Related Topics, Proceedings of the 12th Winter School (Siegmundsburg) 2000, eds. R. Buckdahn et al., Taylor Francis, London, 2002, 55–80 | MR

[7] Dellacherie C., Meyer P.-A., Probabilités et potentiel, Chapitres I à IV, Hermann, Paris, 1975, 291 pp. | MR | Zbl

[8] El Karoui N., Mazliak L., Backward Stochastic Differential Equations, Longman, Harlow, 1997, 221 pp. | MR

[9] Engelbert H.-J., Schmidt W., “On solutions of one-dimensional stochastic differential equations without drift”, Z. Wahrscheinlichkeitstheor. verw. Geb., 68:3 (1985), 287–314 | DOI | MR | Zbl

[10] Engelbert H.-J., Schmidt W., “On one-dimensional stochastic differential equations with generalized drift”, Lecture Notes in Control and Inform. Sci., 69, 1985, 143–155 | MR | Zbl

[11] Engelbert H.-J., Schmidt W., “Strong Markov continuous local martingales and solutions of one-dimensional stochastic differential equations, I, II, III”, Math. Nachr., 143 (1989), 167–184 ; 144 (1989), 241–281 ; 151 (1991), 149–197 | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl

[12] Hamadène S., Lepeltier J.-P., Peng S., “BSDEs with continuous coefficients and stochastic differential games”, Backward Stochastic Differential Equations, eds. N. El Karoui et al., Longman, Harlow, 1997, 115–128 | MR | Zbl

[13] Itô K., “Differential equations determining Markov processes”, Zenkoku Shij\accent'26 o S\accent'26 ugaku Danwakai, 244:1077 (1942), 1352–1400 (in Japanese)

[14] Itô K., On stochastic differential equations, Mem. Amer. Math. Soc., 4, 1951, 51 pp. | MR

[15] Jacod J., Calcul stochastique et problèmes de martingales, Lecture Notes in Math., 714, 1979, 539 pp. | MR | Zbl

[16] Kabanov Yu. M., “O printsipe maksimuma Pontryagina dlya lineinykh stokhasticheskikh differentsialnykh uravnenii”, Veroyatnostnye modeli i upravlenie ekonomicheskimi protsessami, TsEMI, M., 1978

[17] Krylov N. V., “O stokhasticheskikh integralnykh uravneniyakh Ito”, Teoriya veroyatn. i ee primen., 14:2 (1969), 340–348 ; 17:2 (1972), 392–393 | Zbl | MR | Zbl

[18] Krylov N. V., Upravlyaemye diffuzionnye protsessy, Nauka, M., 1977, 388 pp. | MR

[19] Lepeltier J.-P., San Martin J., “Backward stochastic differential equations with continuous coefficient”, Statist. Probab. Lett., 32:4 (1997), 425–430 | DOI | MR | Zbl

[20] Meyer P. A., Zheng W. A., “Tightness criteria for laws of semimartingales”, Ann. Inst. Henri Poincaré, Probab. Statist., 20 (1984), 353–372 | MR | Zbl

[21] Pardoux E., Peng S., “Adapted solution of a backward stochastic differential equation”, Systems Control Lett., 14:1 (1990), 55–61 | DOI | MR | Zbl

[22] Protter Ph., Stochastic Integration and Differential Equations. A New Approach, Springer-Verlag, Berlin, 1990, 302 pp. | MR | Zbl

[23] Revuz D., Yor M., Continuous Martingales and Brownian Motion, Springer-Verlag, Berlin, 1991, 533 pp. | MR | Zbl

[24] Rozkosz A., Słomiński L., “On existence and stability of weak solutions of multidimensional stochastic differential equations with measurable coefficients”, Stochastic Process. Appl., 37:2 (1991), 187–197 | DOI | MR | Zbl

[25] Rozkosz A., Słomiński L., “On stability and existence of SDE s with reflection at the boundary”, Stochastic Process. Appl., 68:2 (1997), 285–302 | DOI | MR | Zbl

[26] Skorokhod A. V., Issledovanie po teorii sluchainykh protsessov, Izd-vo Kievskogo un-ta, Kiev, 1961, 216 pp.

[27] Skorokhod A. V., “Stokhasticheskie uravneniya dlya protsessov diffuzii s granitsami. I, II”, Teoriya veroyatn. i ee primen., 6:3 (1961), 287–298 ; 7:1 (1962), 5–25 | MR | Zbl | MR | Zbl

[28] Tsirelson B.S., “Odin primer stokhasticheskogo differentsialnogo uravneniya, ne imeyuschego silnogo resheniya”, Teoriya veroyatn. i ee primen., 20:2 (1975), 427–430 | MR

[29] Watanabe S., Yamada T., “On the uniqueness of solutions of stochastic differential equations”, J. Math. Kyoto Univ., 11 (1971), 155–167 | MR | Zbl

[30] Zvonkin A. K., “Preobrazovanie fazovogo prostranstva diffuzionnogo protsessa, “unichtozhayuschee” snos”, Matem. sb., 93:1 (1974), 129–149 | MR | Zbl