On weak solutions of backward stochastic differential
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 49 (2004) no. 1, pp. 70-108
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The main objective of this paper consists in discussing
the concept of weak solutions of a certain type of backward stochastic
differential equations. Using weak convergence in the Meyer–Zheng topology, we
shall give a general existence result. The terminal condition $H$ depends in
functional form on a driving càdlàg process $X$, and the coefficient
$f$ depends on time $t$ and in functional form on $X$ and the solution process
$Y$. The functional $f(t,x,y),(t,x,y)\in [0,T]\times D([0,T];{R}^{d+m})$
is assumed to be bounded and continuous in $(x,y)$ on
the Skorokhod space $D([0,T]\,;{R}^{d+m})$ in the Meyer–Zheng
topology. By several examples of Tsirelson type, we will show that there are,
indeed, weak solutions which are not strong, i.e., are not solutions in the
usual sense. We will also discuss pathwise uniqueness and uniqueness in law
of the solution and conclude, similar to the Yamada–Watanabe theorem, that
pathwise uniqueness and weak existence ensure the existence of a (uniquely
determined) strong solution. Applying these concepts, we are able to state
the existence of a (unique) strong solution if, additionally to the
assumptions described above, $f$ satisfies a certain generalized
Lipschitz-type condition.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
backward stochastic differential equation, weak solution, strong solution, Tsirelson's example, pathwise uniqueness, uniqueness in law, Meyer–Zheng topology, weak convergence.
                    
                    
                    
                  
                
                
                @article{TVP_2004_49_1_a4,
     author = {R. Buckdahn and H. J. Engelbert and A. Rascanu},
     title = {On weak solutions of backward stochastic differential},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {70--108},
     publisher = {mathdoc},
     volume = {49},
     number = {1},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TVP_2004_49_1_a4/}
}
                      
                      
                    TY - JOUR AU - R. Buckdahn AU - H. J. Engelbert AU - A. Rascanu TI - On weak solutions of backward stochastic differential JO - Teoriâ veroâtnostej i ee primeneniâ PY - 2004 SP - 70 EP - 108 VL - 49 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_2004_49_1_a4/ LA - en ID - TVP_2004_49_1_a4 ER -
R. Buckdahn; H. J. Engelbert; A. Rascanu. On weak solutions of backward stochastic differential. Teoriâ veroâtnostej i ee primeneniâ, Tome 49 (2004) no. 1, pp. 70-108. http://geodesic.mathdoc.fr/item/TVP_2004_49_1_a4/
