@article{TVP_2004_49_1_a4,
author = {R. Buckdahn and H. J. Engelbert and A. Rascanu},
title = {On weak solutions of backward stochastic differential},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {70--108},
year = {2004},
volume = {49},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TVP_2004_49_1_a4/}
}
R. Buckdahn; H. J. Engelbert; A. Rascanu. On weak solutions of backward stochastic differential. Teoriâ veroâtnostej i ee primeneniâ, Tome 49 (2004) no. 1, pp. 70-108. http://geodesic.mathdoc.fr/item/TVP_2004_49_1_a4/
[1] Antonelli F., Ma J., “Weak solutions of forward-backward SDE's”, Stochastic Anal. Appl., 21:3 (2003), 493–514 | DOI | MR | Zbl
[2] Arkin V. I., Saksonov M. T., “Neobkhodimye usloviya optimalnosti v zadachakh upravleniya stokhasticheskimi differentsialnymi uravneniyami”, Dokl. AN SSSR, 244:1 (1979), 11–15 | MR | Zbl
[3] Bahlali K., Essaky E. H., Hassani M., Pardoux E., “Existence, uniqueness and stability of backward stochastic differential equations with locally monotone coefficient”, C. R. Acad. Sci. Paris Sér. I, 335 (2002), 757–762 | MR | Zbl
[4] Bismut J. M., “Conjugate convex functions in optimal stochastic control”, J. Math. Anal. Appl., 44 (1973), 384–404 | DOI | MR
[5] Bismut J. M., “Contrôle des systèmes linéaires quadratiques: applications de l'intégrale stochastique”, Lecture Notes in Math., 649, 1978, 180–264 | MR | Zbl
[6] Cherny A. S., Engelbert H.-J., “Isolated singular points of stochastic differential equations”, Stochastic Processes and Related Topics, Proceedings of the 12th Winter School (Siegmundsburg) 2000, eds. R. Buckdahn et al., Taylor Francis, London, 2002, 55–80 | MR
[7] Dellacherie C., Meyer P.-A., Probabilités et potentiel, Chapitres I à IV, Hermann, Paris, 1975, 291 pp. | MR | Zbl
[8] El Karoui N., Mazliak L., Backward Stochastic Differential Equations, Longman, Harlow, 1997, 221 pp. | MR
[9] Engelbert H.-J., Schmidt W., “On solutions of one-dimensional stochastic differential equations without drift”, Z. Wahrscheinlichkeitstheor. verw. Geb., 68:3 (1985), 287–314 | DOI | MR | Zbl
[10] Engelbert H.-J., Schmidt W., “On one-dimensional stochastic differential equations with generalized drift”, Lecture Notes in Control and Inform. Sci., 69, 1985, 143–155 | MR | Zbl
[11] Engelbert H.-J., Schmidt W., “Strong Markov continuous local martingales and solutions of one-dimensional stochastic differential equations, I, II, III”, Math. Nachr., 143 (1989), 167–184 ; 144 (1989), 241–281 ; 151 (1991), 149–197 | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl
[12] Hamadène S., Lepeltier J.-P., Peng S., “BSDEs with continuous coefficients and stochastic differential games”, Backward Stochastic Differential Equations, eds. N. El Karoui et al., Longman, Harlow, 1997, 115–128 | MR | Zbl
[13] Itô K., “Differential equations determining Markov processes”, Zenkoku Shij\accent'26 o S\accent'26 ugaku Danwakai, 244:1077 (1942), 1352–1400 (in Japanese)
[14] Itô K., On stochastic differential equations, Mem. Amer. Math. Soc., 4, 1951, 51 pp. | MR
[15] Jacod J., Calcul stochastique et problèmes de martingales, Lecture Notes in Math., 714, 1979, 539 pp. | MR | Zbl
[16] Kabanov Yu. M., “O printsipe maksimuma Pontryagina dlya lineinykh stokhasticheskikh differentsialnykh uravnenii”, Veroyatnostnye modeli i upravlenie ekonomicheskimi protsessami, TsEMI, M., 1978
[17] Krylov N. V., “O stokhasticheskikh integralnykh uravneniyakh Ito”, Teoriya veroyatn. i ee primen., 14:2 (1969), 340–348 ; 17:2 (1972), 392–393 | Zbl | MR | Zbl
[18] Krylov N. V., Upravlyaemye diffuzionnye protsessy, Nauka, M., 1977, 388 pp. | MR
[19] Lepeltier J.-P., San Martin J., “Backward stochastic differential equations with continuous coefficient”, Statist. Probab. Lett., 32:4 (1997), 425–430 | DOI | MR | Zbl
[20] Meyer P. A., Zheng W. A., “Tightness criteria for laws of semimartingales”, Ann. Inst. Henri Poincaré, Probab. Statist., 20 (1984), 353–372 | MR | Zbl
[21] Pardoux E., Peng S., “Adapted solution of a backward stochastic differential equation”, Systems Control Lett., 14:1 (1990), 55–61 | DOI | MR | Zbl
[22] Protter Ph., Stochastic Integration and Differential Equations. A New Approach, Springer-Verlag, Berlin, 1990, 302 pp. | MR | Zbl
[23] Revuz D., Yor M., Continuous Martingales and Brownian Motion, Springer-Verlag, Berlin, 1991, 533 pp. | MR | Zbl
[24] Rozkosz A., Słomiński L., “On existence and stability of weak solutions of multidimensional stochastic differential equations with measurable coefficients”, Stochastic Process. Appl., 37:2 (1991), 187–197 | DOI | MR | Zbl
[25] Rozkosz A., Słomiński L., “On stability and existence of SDE s with reflection at the boundary”, Stochastic Process. Appl., 68:2 (1997), 285–302 | DOI | MR | Zbl
[26] Skorokhod A. V., Issledovanie po teorii sluchainykh protsessov, Izd-vo Kievskogo un-ta, Kiev, 1961, 216 pp.
[27] Skorokhod A. V., “Stokhasticheskie uravneniya dlya protsessov diffuzii s granitsami. I, II”, Teoriya veroyatn. i ee primen., 6:3 (1961), 287–298 ; 7:1 (1962), 5–25 | MR | Zbl | MR | Zbl
[28] Tsirelson B.S., “Odin primer stokhasticheskogo differentsialnogo uravneniya, ne imeyuschego silnogo resheniya”, Teoriya veroyatn. i ee primen., 20:2 (1975), 427–430 | MR
[29] Watanabe S., Yamada T., “On the uniqueness of solutions of stochastic differential equations”, J. Math. Kyoto Univ., 11 (1971), 155–167 | MR | Zbl
[30] Zvonkin A. K., “Preobrazovanie fazovogo prostranstva diffuzionnogo protsessa, “unichtozhayuschee” snos”, Matem. sb., 93:1 (1974), 129–149 | MR | Zbl