Mots-clés : von Mises model
@article{TVP_2004_49_1_a3,
author = {A. Yu. Khrennikov and Sh. Yamada},
title = {On the concept of random sequence with respect},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {54--69},
year = {2004},
volume = {49},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2004_49_1_a3/}
}
A. Yu. Khrennikov; Sh. Yamada. On the concept of random sequence with respect. Teoriâ veroâtnostej i ee primeneniâ, Tome 49 (2004) no. 1, pp. 54-69. http://geodesic.mathdoc.fr/item/TVP_2004_49_1_a3/
[1] Schikof W., Ultrametric Calculus, Cambridge Univ. Press, Cambridge, 1984, 306 pp. | MR
[2] Koblitz N., $p$-Adic Analysis. A Short Course on Recent Work, Cambridge Univ. Press, Cambridge, 1980, 163 pp. | MR | Zbl
[3] Volovich I. V., “$p$-adic string”, Classical Quantum Gravity, 4 (1987), 83–87 | DOI | MR
[4] Freund P. G. O., Witten E., “Adelic string amplitudes”, Phys. Lett. B, 199:2 (1987), 191–194 | DOI | MR
[5] Vladimirov V. S., Volovich I. V., Zelenov E. I., $p$-adicheskii analiz i matematicheskaya fizika, Nauka, M., 1994, 352 pp. | MR
[6] Frampton P. H., Okada Y., “$p$-adic string $N$-point function”, Phys. Rev. Lett. B, 60:6 (1988), 484–486 | DOI | MR
[7] Khrennikov A. Yu., $p$-Adic Valued Distributions in Mathematical Physics, Kluwer, Dordrecht, 1994, 264 pp. | MR | Zbl
[8] Khrennikov A. Yu., “$p$-adicheskaya teoriya veroyatnostei i ee prilozheniya. Printsip statisticheskoi stabilizatsii chastot”, Teoret. matem. fizika, 97:3 (1993), 348–363 | MR | Zbl
[9] Khrennikov A. Yu., “O veroyatnostnykh raspredeleniyakh na pole $p$-adicheskikh chisel”, Teoriya veroyatn. i ee primen., 40:1 (1995), 189–192 | MR | Zbl
[10] Khrennikov A. Yu., “O rasshirenii chastotnogo podkhoda R. fon Mizesa i aksiomaticheskogo podkhoda A. N. Kolmogorova na $p$-adicheskuyu teoriyu veroyatnostei”, Teoriya veroyatn. i ee primen., 40:2 (1995), 458–464 | MR
[11] Kolmogorov A. N., Osnovnye ponyatiya teorii veroyatnostei, ONTI, M., L., 1936, 80 pp.
[12] von Mises R., Mathematical Theory of Probability and Statistics, Academic Press, New York, London, 1964, 694 pp. | MR
[13] Tornier E., Wahrscheinlichkeitsrechnunug und Allgemeine Integrationstheorie, Teubner, Leipzig, 1936, 160 pp. | MR
[14] Solomonoff R. J., “A formal theory of inductive inference. I, II”, Information and Control, 7 (1964), 1–22 ; 224–254 | DOI | MR | Zbl | MR | Zbl
[15] Kolmogorov A. N., “Tri podkhoda k opredeleniyu ponyatiya “kolichestvo informatsii””, Problemy peredachi informatsii, 1:1 (1965), 3–11 | MR | Zbl
[16] Uspensky V. A., Shen A., “Relations between varieties of Kolmogorov complexities”, Math. Systems Theory, 29:3 (1996), 271–292 | MR | Zbl
[17] Zvonkin A. K., Levin L. A., “Slozhnost konechnykh ob'ektov i obosnovanie ponyatii informatsii i sluchainosti s pomoschyu teorii algoritmov”, Uspekhi matem. nauk, 25:6 (1970), 85–127 | MR | Zbl
[18] Li M., Vitányi P., An Introduction to Kolmogorov Complexity and Its Applications, Springer-Verlag, New York, 1997, 637 pp. | MR
[19] Khrennikov A. Yu., “Opisanie eksperimentov po nakhozhdeniyu $p$-adicheskoi statistiki v kvantovykh difraktsionnykh eksperimentakh”, Dokl. RAN, 58:3 (1998), 478–480 | Zbl
[20] Khrennikov A. Yu., “$p$-adic probability predictions of correlations between particles in the two slit and neuron interferometry experiments”, Nuovo Cimento Soc. Ital. Fis. B (12), 113:6 (1998), 751–760 | MR
[21] Martin-Lëf P., “O ponyatii sluchainoi posledovatelnosti”, Teoriya veroyatn. i ee primen., 11:1 (1966), 198–200
[22] Martin-Löf P., “The definition of random sequences”, Information and Control, 9 (1966), 602–619 | DOI | MR
[23] Khrennikov A. Yu., “$p$-adicheskaya asimptotika bernullievskikh veroyatnostei”, Teoriya veroyatn. i ee primen., 42:4 (1997), 839–845 | MR | Zbl