On the concept of random sequence with respect
Teoriâ veroâtnostej i ee primeneniâ, Tome 49 (2004) no. 1, pp. 54-69 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper continues investigations on generalized probability models in which probabilities belong to fields of $p$-adic numbers. We study a $p$-adic generalization of Martin–Löf's theory based on tests for randomness. Such generalization appears to be the most natural approach to $p$-adic randomness. Each test for randomness induces a series of limit theorems. We proved that it is possible to enumerate all $p$-adic tests for randomness. However, in contrast to Martin–Löf's theory for real probabilities we proved that a universal test for randomness does not exist.
Keywords: randomness, collective, Kolmogorov model, $p$-adic numbers.
Mots-clés : von Mises model
@article{TVP_2004_49_1_a3,
     author = {A. Yu. Khrennikov and Sh. Yamada},
     title = {On the concept of random sequence with respect},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {54--69},
     year = {2004},
     volume = {49},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2004_49_1_a3/}
}
TY  - JOUR
AU  - A. Yu. Khrennikov
AU  - Sh. Yamada
TI  - On the concept of random sequence with respect
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2004
SP  - 54
EP  - 69
VL  - 49
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TVP_2004_49_1_a3/
LA  - ru
ID  - TVP_2004_49_1_a3
ER  - 
%0 Journal Article
%A A. Yu. Khrennikov
%A Sh. Yamada
%T On the concept of random sequence with respect
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2004
%P 54-69
%V 49
%N 1
%U http://geodesic.mathdoc.fr/item/TVP_2004_49_1_a3/
%G ru
%F TVP_2004_49_1_a3
A. Yu. Khrennikov; Sh. Yamada. On the concept of random sequence with respect. Teoriâ veroâtnostej i ee primeneniâ, Tome 49 (2004) no. 1, pp. 54-69. http://geodesic.mathdoc.fr/item/TVP_2004_49_1_a3/

[1] Schikof W., Ultrametric Calculus, Cambridge Univ. Press, Cambridge, 1984, 306 pp. | MR

[2] Koblitz N., $p$-Adic Analysis. A Short Course on Recent Work, Cambridge Univ. Press, Cambridge, 1980, 163 pp. | MR | Zbl

[3] Volovich I. V., “$p$-adic string”, Classical Quantum Gravity, 4 (1987), 83–87 | DOI | MR

[4] Freund P. G. O., Witten E., “Adelic string amplitudes”, Phys. Lett. B, 199:2 (1987), 191–194 | DOI | MR

[5] Vladimirov V. S., Volovich I. V., Zelenov E. I., $p$-adicheskii analiz i matematicheskaya fizika, Nauka, M., 1994, 352 pp. | MR

[6] Frampton P. H., Okada Y., “$p$-adic string $N$-point function”, Phys. Rev. Lett. B, 60:6 (1988), 484–486 | DOI | MR

[7] Khrennikov A. Yu., $p$-Adic Valued Distributions in Mathematical Physics, Kluwer, Dordrecht, 1994, 264 pp. | MR | Zbl

[8] Khrennikov A. Yu., “$p$-adicheskaya teoriya veroyatnostei i ee prilozheniya. Printsip statisticheskoi stabilizatsii chastot”, Teoret. matem. fizika, 97:3 (1993), 348–363 | MR | Zbl

[9] Khrennikov A. Yu., “O veroyatnostnykh raspredeleniyakh na pole $p$-adicheskikh chisel”, Teoriya veroyatn. i ee primen., 40:1 (1995), 189–192 | MR | Zbl

[10] Khrennikov A. Yu., “O rasshirenii chastotnogo podkhoda R. fon Mizesa i aksiomaticheskogo podkhoda A. N. Kolmogorova na $p$-adicheskuyu teoriyu veroyatnostei”, Teoriya veroyatn. i ee primen., 40:2 (1995), 458–464 | MR

[11] Kolmogorov A. N., Osnovnye ponyatiya teorii veroyatnostei, ONTI, M., L., 1936, 80 pp.

[12] von Mises R., Mathematical Theory of Probability and Statistics, Academic Press, New York, London, 1964, 694 pp. | MR

[13] Tornier E., Wahrscheinlichkeitsrechnunug und Allgemeine Integrationstheorie, Teubner, Leipzig, 1936, 160 pp. | MR

[14] Solomonoff R. J., “A formal theory of inductive inference. I, II”, Information and Control, 7 (1964), 1–22 ; 224–254 | DOI | MR | Zbl | MR | Zbl

[15] Kolmogorov A. N., “Tri podkhoda k opredeleniyu ponyatiya “kolichestvo informatsii””, Problemy peredachi informatsii, 1:1 (1965), 3–11 | MR | Zbl

[16] Uspensky V. A., Shen A., “Relations between varieties of Kolmogorov complexities”, Math. Systems Theory, 29:3 (1996), 271–292 | MR | Zbl

[17] Zvonkin A. K., Levin L. A., “Slozhnost konechnykh ob'ektov i obosnovanie ponyatii informatsii i sluchainosti s pomoschyu teorii algoritmov”, Uspekhi matem. nauk, 25:6 (1970), 85–127 | MR | Zbl

[18] Li M., Vitányi P., An Introduction to Kolmogorov Complexity and Its Applications, Springer-Verlag, New York, 1997, 637 pp. | MR

[19] Khrennikov A. Yu., “Opisanie eksperimentov po nakhozhdeniyu $p$-adicheskoi statistiki v kvantovykh difraktsionnykh eksperimentakh”, Dokl. RAN, 58:3 (1998), 478–480 | Zbl

[20] Khrennikov A. Yu., “$p$-adic probability predictions of correlations between particles in the two slit and neuron interferometry experiments”, Nuovo Cimento Soc. Ital. Fis. B (12), 113:6 (1998), 751–760 | MR

[21] Martin-Lëf P., “O ponyatii sluchainoi posledovatelnosti”, Teoriya veroyatn. i ee primen., 11:1 (1966), 198–200

[22] Martin-Löf P., “The definition of random sequences”, Information and Control, 9 (1966), 602–619 | DOI | MR

[23] Khrennikov A. Yu., “$p$-adicheskaya asimptotika bernullievskikh veroyatnostei”, Teoriya veroyatn. i ee primen., 42:4 (1997), 839–845 | MR | Zbl