A new approach to the stochastic recovery problem
Teoriâ veroâtnostej i ee primeneniâ, Tome 49 (2004) no. 1, pp. 36-53 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the problem of minimax estimation of linear functionals on function classes, also known as the recovery problem. We propose a new formalization of the original applied problem — in both deterministic and stochastic settings. For the latter case we propose a natural probability measure on the set generated by the problem's information operator. We then provides some examples of solving recovery problems in the new framework and determines the statistical properties of the stochastic recovery problem's solution. Finally, we consider an application of the proposed approach to the problem of nonparametric minimax estimation of the regression function.
Keywords: recovery problem, a posteriori distribution, nonparametric minimax estimation.
@article{TVP_2004_49_1_a2,
     author = {B. S. Darhovsky},
     title = {A new approach to the stochastic recovery problem},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {36--53},
     year = {2004},
     volume = {49},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2004_49_1_a2/}
}
TY  - JOUR
AU  - B. S. Darhovsky
TI  - A new approach to the stochastic recovery problem
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2004
SP  - 36
EP  - 53
VL  - 49
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TVP_2004_49_1_a2/
LA  - ru
ID  - TVP_2004_49_1_a2
ER  - 
%0 Journal Article
%A B. S. Darhovsky
%T A new approach to the stochastic recovery problem
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2004
%P 36-53
%V 49
%N 1
%U http://geodesic.mathdoc.fr/item/TVP_2004_49_1_a2/
%G ru
%F TVP_2004_49_1_a2
B. S. Darhovsky. A new approach to the stochastic recovery problem. Teoriâ veroâtnostej i ee primeneniâ, Tome 49 (2004) no. 1, pp. 36-53. http://geodesic.mathdoc.fr/item/TVP_2004_49_1_a2/

[1] Traub Dzh., Vozhnyakovskii Kh., Obschaya teoriya optimalnykh algoritmov, Mir, M., 1983, 382 pp. | MR | Zbl

[2] Micchelli C. A., Rivlin T. J., “A survey of optimal recovery”, Optimal Estimation in Approximation Theory, eds. C. A. Micchelli and T. J. Rivlin, Plenum, New York, 1977, 1–54 | MR

[3] Magaril-Ilyaev G. G., Tikhomirov V. M., Vypuklyi analiz i ego prilozheniya, Editorial URSS, M., 2000, 174 pp.

[4] Klepikov N. P., Sokolov S. N., “Nelineinyi konflyuentnyi analiz”, Teoriya veroyatn. i ee primen., 2:4 (1957), 472–475 | MR

[5] Sokolov S. N., “Nepreryvnoe planirovanie regressionnykh eksperimentov. I”, Teoriya veroyatn. i ee primen., 8:1 (1963), 95–101 | MR | Zbl

[6] Sokolov S. N., “Nepreryvnoe planirovanie regressionnykh eksperimentov. II”, Teoriya veroyatn. i ee primen., 8:3 (1963), 318–324 | MR | Zbl

[7] Legostaeva I. L., Shiryaev A. N., “Minimaksnye vesa v zadache vydeleniya trenda sluchainogo protsessa”, Teoriya veroyatn. i ee primen., 16:2 (1971), 339–345 | MR | Zbl

[8] Lepski O. V., Spokoiny V. G., “Optimal pointwise adaptive methods in nonparametric estimation”, Ann. Statist., 25:6 (1997), 2512–2546 | DOI | MR | Zbl

[9] Korostelev A. P., “Asimptoticheski minimaksnaya otsenka regressii v ravnomernoi norme s tochnostyu do postoyannoi”, Teoriya veroyatn. i ee primen. primen., 38:4 (1993), 875–882 | MR | Zbl

[10] Leonov S. L., “On the solution of an optimal recovery problem and its application in nonparametric regression”, Math. Methods Statist., 6:4 (1997), 76–490 | MR

[11] Ibragimov I. A., Khasminskii R. Z., Asimptoticheskaya teoriya otsenivaniya, Nauka, M., 1979, 527 s pp. | MR

[12] Efromovich S., Nonparametric Curve Estimation. Methods, Theory, and Applications, Springer-Verlag, New York, 1999, 411 pp. | MR

[13] Darkhovskii B. S., “O stokhasticheskoi zadache vosstanovleniya”, Teoriya veroyatn. i ee primen., 43:2 (1998), 357–364 | MR

[14] Ioffe A. D., Tikhomirov V. M., Teoriya ekstremalnykh zadach, Nauka, M., 1974, 480 pp. | MR | Zbl

[15] Borovkov A. A., Matematicheskaya statistika, Nauka, M., 1984, 472 pp. | MR

[16] Walker A. M., “On the asymptotic behavior of posterior distributions”, J. Roy. Statist. Soc. Ser. B, 31 (1969), 80–88 | MR | Zbl

[17] Schervish M. J., Theory of Statistics, Springer-Verlag, New York, 1995, 702 pp. | MR | Zbl

[18] Fu J. C., Kass R. E., “The exponential rates of convergence of posterior distributions”, Ann. of Inst. Statist. Math., 40:4 (1988), 683–691 | DOI | MR | Zbl

[19] Donoho D. L., Johnstone I. M., Kerkyacharian G., Picard D., “Wavelet shrinkage: asymptopia?”, J. Roy. Statist. Soc. Ser. B, 57:2 (1995), 301–369 | MR | Zbl