Refined large deviations for von Mises
Teoriâ veroâtnostej i ee primeneniâ, Tome 49 (2004) no. 1, pp. 197-204 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We give sufficient conditions for the large deviations principle of real valued von Mises statistics, improving previous results. As a consequence we obtain sufficient conditions for the large deviations principle for Banach space valued $U$-statistics, improving previous results as well. The proofs are based on large deviations results for stochastic processes due to Arcones and a spectral decomposition of the kernel function of the von Mises statistic and the $U$-statistic, respectively.
Keywords: large deviations, $U$-statistics, von Mises statistics, stochastic processes.
@article{TVP_2004_49_1_a14,
     author = {P. Eichelsbacher},
     title = {Refined large deviations for von {Mises}},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {197--204},
     year = {2004},
     volume = {49},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TVP_2004_49_1_a14/}
}
TY  - JOUR
AU  - P. Eichelsbacher
TI  - Refined large deviations for von Mises
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2004
SP  - 197
EP  - 204
VL  - 49
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TVP_2004_49_1_a14/
LA  - en
ID  - TVP_2004_49_1_a14
ER  - 
%0 Journal Article
%A P. Eichelsbacher
%T Refined large deviations for von Mises
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2004
%P 197-204
%V 49
%N 1
%U http://geodesic.mathdoc.fr/item/TVP_2004_49_1_a14/
%G en
%F TVP_2004_49_1_a14
P. Eichelsbacher. Refined large deviations for von Mises. Teoriâ veroâtnostej i ee primeneniâ, Tome 49 (2004) no. 1, pp. 197-204. http://geodesic.mathdoc.fr/item/TVP_2004_49_1_a14/

[1] Arcones M., “Large deviations of empirical processes”, High Dimensional Probability, v. III, eds. J. Hoffmann-Jørgensen, M. B. Marcus, and J. A. Wellner, Birkhäuser, Boston, 2003, 205–223 | MR | Zbl

[2] Arcones M. A., “Large deviations for $U$-statistics”, J. Multivariate Anal., 42:2 (1992), 299–301 | DOI | MR | Zbl

[3] Dembo A., Zeitouni O., Large Deviations Techniques and Applications, Springer-Verlag, New York, 1998, 386 pp. | MR | Zbl

[4] Donsker M., Varadhan S., “Asymptotic evaluation of certain Markov process expectations for large time. III”, Comm. Pure Appl. Math., 29 (1976), 389–461 | DOI | MR | Zbl

[5] Eichelsbacher P., “Large deviations for products of empirical probability measures in the $\tau$”, J. Theoret. Probab., 10:4 (1997), 903–920 | DOI | MR | Zbl

[6] Eichelsbacher P., Schmock U., “Large deviations of $U$-empirical measures in strong topologies and applications”, Ann. Inst. H. Poincaré, Probab. Statist., 38:5 (2002), 779–797 | MR | Zbl

[7] Hoeffding W., “Probability inequalities for sums of bounded random variables”, J. Amer. Statist. Assoc., 58 (1963), 13–30 | DOI | MR | Zbl

[8] Lee A., $U$-Statistics: Theory and Practice, Dekker, New York, 1990, 302 pp. | MR | Zbl

[9] Schied A., “Cramer's condition and Sanov's theorem”, Statist. Probab. Lett., 39:1 (1998), 55–60 | DOI | MR | Zbl

[10] Serfling R. J., Approximation Theorems of Mathematical Statistics, Wiley, New York, 1980, 371 pp. | MR | Zbl

[11] Sethuraman J., “On the probability of large deviations of families of sample means”, Ann. Math. Statist., 35 (1964), 1304–1316 | DOI | MR | Zbl