On a property of the moment at which Brownian motion attains its maximum
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 49 (2004) no. 1, pp. 184-190
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Let $B=(B_t)_{0\le t\le 1}$ be a standard Brownian motion
and $\theta$ be the moment at which $B$ attains its maximal value,
i.e., $B_\theta=\max_{0\le t\le 1}B_t$.
Denote by $(\mathscr{F}^B_t)_{0\le t\le 1}$ the filtration generated by $B$.
We prove that for any $(\mathscr{F}^B_t)$-stopping time $\tau$ $(0\le\tau\le 1)$,
the following equality holds:
$$
E(B_\theta-B_\tau)^2=E|\theta-\tau|+\frac{1}{2}.
$$
Together with the results
of [S. E. Graversen, G. Peskir, and A. N. Shiryaev,
Theory Probab. Appl., 45 (2000), pp. 41–50] this implies
that the optimal stopping time $\tau_*$ in the problem
$$
\inf_\tauE|\theta-\tau|
$$
has the form
$$
\tau_*=\inf\big\{0\le  t\le 1: S_t-B_t\ge z_*\sqrt{1-t}\,\big\},
$$
where $S_t=\max_{0\le s\le t}B_s$, $z_*$ is a unique positive
root of the equation $4\Phi(z)-2z\phi(z)-3=0$, $\phi(z)$
and $\Phi(z)$ are the density and the distribution function
of a standard Gaussian random variable.
Similarly, we solve the optimal stopping problems
$$
\inf_{\tau\in\mathfrak{M}_\alpha}E(\tau-\theta)^+
\quadand\quad
\inf_{\tau\in\mathfrak{N}_\alpha}E(\tau-\theta)^-,
$$
where
$\mathfrak{M}_\alpha=\{\tau\colon\,E(\tau-\theta)^-\le \alpha\}$,
and $\mathfrak{N}_\alpha=\{\tau\colon\,E(\tau-\theta)^+\le\alpha\}$.
The corresponding optimal stopping times are of the
same form as above (with other $z_*$'s).
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
moment of attaining the maximum, Brownian motion, optimal stopping.
                    
                  
                
                
                @article{TVP_2004_49_1_a12,
     author = {M. A. Urusov},
     title = {On a property of the moment at which {Brownian} motion attains its maximum},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {184--190},
     publisher = {mathdoc},
     volume = {49},
     number = {1},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2004_49_1_a12/}
}
                      
                      
                    M. A. Urusov. On a property of the moment at which Brownian motion attains its maximum. Teoriâ veroâtnostej i ee primeneniâ, Tome 49 (2004) no. 1, pp. 184-190. http://geodesic.mathdoc.fr/item/TVP_2004_49_1_a12/
