On a property of the moment at which Brownian motion attains its maximum
Teoriâ veroâtnostej i ee primeneniâ, Tome 49 (2004) no. 1, pp. 184-190

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $B=(B_t)_{0\le t\le 1}$ be a standard Brownian motion and $\theta$ be the moment at which $B$ attains its maximal value, i.e., $B_\theta=\max_{0\le t\le 1}B_t$. Denote by $(\mathscr{F}^B_t)_{0\le t\le 1}$ the filtration generated by $B$. We prove that for any $(\mathscr{F}^B_t)$-stopping time $\tau$ $(0\le\tau\le 1)$, the following equality holds: $$ E(B_\theta-B_\tau)^2=E|\theta-\tau|+\frac{1}{2}. $$ Together with the results of [S. E. Graversen, G. Peskir, and A. N. Shiryaev, Theory Probab. Appl., 45 (2000), pp. 41–50] this implies that the optimal stopping time $\tau_*$ in the problem $$ \inf_\tauE|\theta-\tau| $$ has the form $$ \tau_*=\inf\big\{0\le t\le 1: S_t-B_t\ge z_*\sqrt{1-t}\,\big\}, $$ where $S_t=\max_{0\le s\le t}B_s$, $z_*$ is a unique positive root of the equation $4\Phi(z)-2z\phi(z)-3=0$, $\phi(z)$ and $\Phi(z)$ are the density and the distribution function of a standard Gaussian random variable. Similarly, we solve the optimal stopping problems $$ \inf_{\tau\in\mathfrak{M}_\alpha}E(\tau-\theta)^+ \quadand\quad \inf_{\tau\in\mathfrak{N}_\alpha}E(\tau-\theta)^-, $$ where $\mathfrak{M}_\alpha=\{\tau\colon\,E(\tau-\theta)^-\le \alpha\}$, and $\mathfrak{N}_\alpha=\{\tau\colon\,E(\tau-\theta)^+\le\alpha\}$. The corresponding optimal stopping times are of the same form as above (with other $z_*$'s).
Keywords: moment of attaining the maximum, Brownian motion, optimal stopping.
@article{TVP_2004_49_1_a12,
     author = {M. A. Urusov},
     title = {On a property of the moment at which {Brownian} motion attains its maximum},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {184--190},
     publisher = {mathdoc},
     volume = {49},
     number = {1},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2004_49_1_a12/}
}
TY  - JOUR
AU  - M. A. Urusov
TI  - On a property of the moment at which Brownian motion attains its maximum
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2004
SP  - 184
EP  - 190
VL  - 49
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_2004_49_1_a12/
LA  - ru
ID  - TVP_2004_49_1_a12
ER  - 
%0 Journal Article
%A M. A. Urusov
%T On a property of the moment at which Brownian motion attains its maximum
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2004
%P 184-190
%V 49
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_2004_49_1_a12/
%G ru
%F TVP_2004_49_1_a12
M. A. Urusov. On a property of the moment at which Brownian motion attains its maximum. Teoriâ veroâtnostej i ee primeneniâ, Tome 49 (2004) no. 1, pp. 184-190. http://geodesic.mathdoc.fr/item/TVP_2004_49_1_a12/